

Today's Goal

To be able to

- prove local and global stability of an equilibrium point through Lyapunov's method
- show stability of a set (for example, a limit cycle) through invariant set theorems

Today's Goal

To be able to

- prove local and global stability of an equilibrium point through Lyapunov's method
- show stability of a set (for example, a limit cycle) through invariant set theorems

Material

- Slotine and Li: Chapter 3
- Lecture notes

Alexandr Mihailovich Lyapunov (1857–1918)

Master's thesis

"On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.

Doctoral thesis

"The general problem of the stability of motion." 1892.

Alexandr Mihailovich Lyapunov (1857–1918)

Master's thesis

"On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.

Doctoral thesis

"The general problem of the stability of motion," 1892

Alexandr Mihailovich Lyapunov (1857–1918)

Master's thesis

"On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.

Doctoral thesis

"The general problem of the stability of motion," 1892.

Lyapunov's idea

If the total energy is dissipated, the system must be stable.

Main benefit

By looking at an energy-like function (a so called Lyapunov function), we might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.

Main question

How to find a Lyapunov function

Lyapunov's idea

If the total energy is dissipated, the system must be stable.

Main benefit

By looking at an energy-like function (a so called Lyapunov function), we might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.

Main question

How to find a Lyapunov function?

Lyapunov's idea

If the total energy is dissipated, the system must be stable.

Main benefit

By looking at an energy-like function (a so called Lyapunov function), we might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.

Main question

How to find a Lyapunov function?

A Motivating Example

$$m\ddot{x} = -\underbrace{b\dot{x}|\dot{x}|}_{\text{damping}} - \underbrace{k_0x - k_1x^3}_{\text{spring}}, \qquad b, k_0, k_1 > 0$$

The energy can be shown to be

$$V(x, \dot{x}) = m\dot{x}^2/2 + k_0 x^2/2 + k_1 x^4/4 > 0, \qquad V(0, 0) = 0$$

$$\frac{d}{dt}V(x,\dot{x}) = m\dot{x}\ddot{x} + k_0x\dot{x} + k_1x^3\dot{x} = -b|\dot{x}|^3 < 0, \qquad \dot{x} \neq 0$$