Today's Goal

To be able to

- prove local and global stability of an equilibrium point through Lyapunov's method
- show stability of a set (for example, a limit cycle) through invariant set theorems

Material

Nonlinear Control

and Servo Systems

Anders Robertsson

Dept. of Automatic Control Lund Institute of Technology

Alexandr Mihailovich Lyapunov (1857–1918)

- Slotine and Li: Chapter 3
- Lecture notes

Master's thesis

"On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.

Doctoral thesis "The general problem of the stability of motion," 1892.

Lyapunov's idea

If the total energy is dissipated, the system must be stable.

Main benefit

By looking at an energy-like function (a so called Lyapunov function), we might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.

Main question How to find a Lyapunov function?

Stability Definitions

An equilibrium point x = 0 of $\dot{x} = f(x)$ is

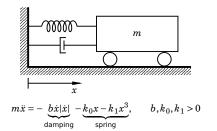
locally stable, if for every R > 0 there exists r > 0, such that

 $\|x(0)\| < r \quad \Rightarrow \quad \|x(t)\| < R, \quad t \ge 0$

locally asymptotically stable, if locally stable and

 $||x(0)|| < r \implies \lim_{t \to \infty} x(t) = 0$

globally asymptotically stable, if asymptotically stable for all $x(0) \in \mathbf{R}^n$.



A Motivating Example

The energy can be shown to be

 $V(x,\dot{x}) = m\dot{x}^2/2 + k_0 x^2/2 + k_1 x^4/4 > 0, \qquad V(0,0) = 0$

$$\frac{d}{dt}V(x,\dot{x})=m\dot{x}\ddot{x}+k_0x\dot{x}+k_1x^3\dot{x}=-b\,|\dot{x}|^3<0,\qquad \dot{x}\neq 0$$

Lyapunov Theorem for Local Stability

Theorem

Let $\dot{x} = f(x)$, f(0) = 0, and $0 \in \Omega \subset \mathbf{R}^n$. Assume that $V : \Omega \to \mathbf{R}$ is a C^1 function. If

V(0) = 0

- V(c) C fama
- V(x) > 0, for all $x \in \Omega$, $x \neq 0$
- $\frac{d}{dt}V(x) \le 0$ along all trajectories in Ω
- then x = 0 is locally stable. Furthermore, if also
- $\frac{d}{dt}V(x) < 0$ for all $x \in \Omega$, $x \neq 0$

then x = 0 is locally asymptotically stable.

Proof: see p. 62.

Lyapunov Functions (~ Energy Functions)

Show that the origin is locally stable for a mathematical pendulum. A Lyapunov function fulfills $V(x_0) = 0$, V(x) > 0 for $x \in \Omega$, $x \neq x_0$, $\dot{x}_1 = x_2, \quad \dot{x}_2 = -\frac{g}{\rho} \sin x_1$ and $\dot{V}(x) = \frac{d}{dt}V(x) = \frac{dV}{dx}\dot{x} = \frac{dV}{dx}f(x) \le 0$ Use as a Lyapunov function candidate $V(x) = (1 - \cos x_1)g\ell + \ell^2 x_2^2/2$ V^{I} x_2 Lyapunov Theorem for Global Stability **Radial Unboundedness is Necessary** If the condition $V(x) \to \infty$ as $\|x\| \to \infty$ is not fulfilled, then global stability cannot be guaranteed. **Example** Assume $V(x) = x_1^2/(1 + x_1^2) + x_2^2$ is a Lyapunov function for **Theorem** Let $\dot{x} = f(x)$ and f(0) = 0. Assume that $V : \mathbf{R}^n \to \mathbf{R}$ is a a system. Can have $||x|| \rightarrow \infty$ even if $\dot{V(x)} < 0$. C^1 function. If Contour plot V(x) = C: $\blacktriangleright V(0) = 0$ ▶ V(x) > 0, for all $x \neq 0$ \blacktriangleright $\dot{V}(x) < 0$ for all $x \neq 0$ ▶ $V(x) \rightarrow \infty$ as $||x|| \rightarrow \infty$ then x = 0 is globally asymptotically stable. **Positive Definite Matrices** More matrix results A symmetric matrix $M = M^T$ satisfies the inequalities A matrix *M* is **positive definite** if $x^T M x > 0$ for all $x \neq 0$. $\lambda_{\min}(M) \|x\|^2 \leq x^T M x \leq \lambda_{\max}(M) \|x\|^2$ It is **positive semidefinite** if $x^T M x \ge 0$ for all x. A symmetric matrix $M = M^T$ is positive definite if and only if its (To show it, use the factorization M = $U\Lambda U^*$, where U is a unitary eigenvalues $\lambda_i > 0$. (semidefinite $\Leftrightarrow \lambda_i \ge 0$) matrix, ||Ux|| = ||x||, U^* is complex conjugate transpose, and Note that if $M = M^T$ is positive definite, then the Lyapunov $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n).)$ function candidate $V(x) = x^T M x$ fulfills V(0) = 0 and V(x) > 0 for For any matrix M one also has all $x \neq 0$. $\|Mx\| \leq \lambda_{\max}^{1/2}(M^TM)\|x\|$ Lyapunov Function for Linear System Lyapunov's Linearization Method

Theorem The eigenvalues λ_i of A satisfy $\operatorname{Re} \lambda_i < 0$ if and only if: for every positive definite $Q = Q^T$ there exists a positive definite $P = P^T$ such that

 $PA + A^T P = -Q$

Proof of $\exists Q, P \Rightarrow Re \lambda_i(A) < 0$: Consider $\dot{x} = Ax$ and the Lyapunov function candidate $V(x) = x^T P x$.

 $\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = x^T (P A + A^T P) x = -x^T Q x < 0, \quad \forall x \neq 0$

 $\Rightarrow \dot{x} = Ax \text{ asymptotically stable } \iff \operatorname{Re} \lambda_i < 0$ Proof of $\operatorname{Re} \lambda_i(A) < 0 \Rightarrow \exists Q, P$: Choose $P = \int_0^\infty e^{A^T t} Q e^{At} dt$ Recall from Lecture 2:

Theorem Consider

 $\dot{x} = f(x)$

Assume that x = 0 is an equilibrium point and that

 $\dot{x} = Ax + g(x)$

2 min exercise—Pendulum

is a linearization.

(1) If $\operatorname{Re} \lambda_i(A) < 0$ for all i, then x = 0 is locally asymptotically stable.

(2) If there exists *i* such that $\lambda_i(A) > 0$, then x = 0 is unstable.