
A new implementation of LATEX’s tabular and array

environment∗

Frank Mittelbach David Carlisle†

Printed March 19, 1997

Abstract

This article describes an extended implementation of the LATEX array–

and tabular–environments. The special merits of this implementation are

further options to format columns and the fact that fragile LATEX–commands

don’t have to be \protect’ed any more within those environments.

The major part of the code for this package dates back to 1988—so does

some of its documentation.

1 Introduction

This new implementation of the array– and tabular–environments is part of a larger
project in which we are trying to improve the LATEX-code in some aspects and to
make LATEX even easier to handle.

The reader should be familiar with the general structure of the environments
mentioned above. Further information can be found in [3] and [1]. The additional
options which can be used in the preamble as well as those which now have a
slightly different meaning are described in table 1.

Additionally we introduce a new parameter called \extrarowheight. If it\extrarowheight

takes a positive length, the value of the parameter is added to the normal height
of every row of the table, while the depth will remain the same. This is important
for tables with horizontal lines because those lines normally touch the capital
letters. For example, we used \setlength{\extrarowheight}{1pt} in table 1.

We will discuss a few examples using the new preamble options before dealing
with the implementation.

• If you want to use a special font (for example \bfseries) in a flushed left
column, this can be done with >{\bfseries}l. You do not have to begin
every entry of the column with \bfseries any more.

• In columns which have been generated with p, m or b, the default value of
\parindent is 0pt. This can be changed with
>{\setlength{\parindent}{1cm}}p.

• The >– and <–options were originally developed for the following application:
>{$}c<{$} generates a column in math mode in a tabular–environment. If
you use this type of a preamble in an array–environment, you get a column
in LR mode because the additional $’s cancel the existing $’s.

• One can also think of more complex applications. A problem which has been
mentioned several times in TEXhax can be solved with >{\centerdots}c

<{\endcenterdots}. To center decimals at their decimal points you (only?)
have to define the following macros:

{\catcode‘\.\active\gdef.{\egroup\setbox2\hbox\bgroup}}

∗This file has version number v2.3i, last revised 1996/06/14.
†David kindly agreed on the inclusion of the \newcolumntype implementation, formerly in

newarray.sty into this package

1

Unchanged options

l Left adjusted column.

c Centered adjusted column.

r Right adjusted column.

p{width} Equivalent to \parbox[t]{width}.

@{decl.} Suppresses inter-column space and inserts decl. instead.

New options

m{width}
Defines a column of width width. Every entry will be cen-
tered in proportion to the rest of the line. It is somewhat
like \parbox{width}.

b{width} Coincides with \parbox[b]{width}.

>{decl.}
Can be used before an l, r, c, p, m or a b option. It inserts
decl. directly in front of the entry of the column.

<{decl.}
Can be used after an l, r, c, p{..}, m{..} or a b{..}

option. It inserts decl. right after the entry of the column.

|

Inserts a vertical line. The distance between two columns
will be enlarged by the width of the line in contrast to the
original definition of LATEX.

!{decl.}

Can be used anywhere and corresponds with the | option.
The difference is that decl. is inserted instead of a vertical
line, so this option doesn’t suppress the normally inserted
space between columns in contrast to @{...}.

Table 1: The preamble options.

\def\centerdots{\catcode‘\.\active\setbox0\hbox\bgroup}

\def\endcenterdots{\egroup\ifvoid2 \setbox2\hbox{0}\fi

\ifdim \wd0>\wd2 \setbox2\hbox to\wd0{\unhbox2\hfill}\else

\setbox0\hbox to\wd2{\hfill\unhbox0}\fi

\catcode‘\.12 \box0.\box2}

Warning: The code is bad, it doesn’t work with more than one dot in a cell
and doesn’t work when the tabular is used in the argument of some other
command. A much better version is provided in the dcolumn.sty by David
Carlisle.

• Using c!{\hspace{1cm}}c you get space between two columns which is en-
larged by one centimeter, while c@{\hspace{1cm}}c gives you exactly one
centimeter space between two columns.

1.1 Defining new column specifiers

Whilst it is handy to be able to type\newcolumntype

>{〈some declarations〉}{c}<{〈some more declarations〉}

if you have a one-off column in a table, it is rather inconvenient if you often use
columns of this form. The new version allows you to define a new column specifier,
say x, which will expand to the primitives column specifiers.1 Thus we may define

\newcolumntype{x}{>{〈some declarations〉}{c}<{〈some more declarations〉}}

One can then use the x column specifier in the preamble arguments of all array
or tabular environments in which you want columns of this form.

It is common to need math-mode and LR-mode columns in the same alignment.
If we define:

1This command was named \newcolumn in the newarray.sty. At the moment \newcolumn is
still supported (but gives a warning). In later releases it will vanish.

2

\newcolumntype{C}{>{$}c<{$}}

\newcolumntype{L}{>{$}l<{$}}

\newcolumntype{R}{>{$}r<{$}}

Then we can use C to get centred LR-mode in an array, or centred math-mode
in a tabular.

The example given above for ‘centred decimal points’ could be assigned to a d

specifier with the following command.

\newcolumntype{d}{>{\centerdots}c<{\endcenterdots}}

The above solution always centres the dot in the column. This does not look
too good if the column consists of large numbers, but to only a few decimal places.
An alternative definition of a d column is

\newcolumntype{d}[1]{>{\rightdots{#1}}r<{\endrightdots}}

where the appropriate macros in this case are:2

\def\coldot{.}% Or if you prefer, \def\coldot{\cdot}

{\catcode‘\.=\active

\gdef.{$\egroup\setbox2=\hbox to \dimen0 \bgroup$\coldot}}

\def\rightdots#1{%

\setbox0=\hbox{1}\dimen0=#1\wd0

\setbox0=\hbox{\coldot}\advance\dimen0 \wd0

\setbox2=\hbox to \dimen0 {}%

\setbox0=\hbox\bgroup\mathcode‘\.="8000 $}

\def\endrightdots{$\hfil\egroup\box0\box2}

Note that \newcolumntype takes the same optional argument as \newcommand

which declares the number of arguments of the column specifier being defined.
Now we can specify d{2} in our preamble for a column of figures to at most two
decimal places.

A rather different use of the \newcolumntype system takes advantage of the
fact that the replacement text in the \newcolumntype command may refer to
more than one column. Suppose that a document contains a lot of tabular

environments that require the same preamble, but you wish to experiment with
different preambles. Lamport’s original definition allowed you to do the following
(although it was probably a mis-use of the system).

\newcommand{\X}{clr}

\begin{tabular}{\X} . . .

array.sty takes great care not to expand the preamble, and so the above does not
work with the new scheme. With the new version this functionality is returned:

\newcolumntype{X}{clr}

\begin{tabular}{X} . . .

The replacement text in a \newcolumntype command may refer to any of the
primitives of array.sty see table 1 on page 2, or to any new letters defined in
other \newcolumntype commands.

A list of all the currently active \newcolumntype definitions is sent to the\showcols

terminal and log file if the \showcols command is given.

1.2 Special variations of \hline

The family of tabular environments allows vertical positioning with respect to the
baseline of the text in which the environment appears. By default the environment
appears centered, but this can be changed to align with the first or last line in
the environment by supplying a t or b value to the optional position argument.
However, this does not work when the first or last element in the environment is a
\hline command—in that case the environment is aligned at the horizontal rule.

2The package dcolumn.sty contains more robust macros based on these ideas.

3

Here is an example:

Tables with no
hline
commands
used

versus

tables
with some
hline
commands

used.

Tables

\begin{tabular}[t]{l}

with no\\ hline \\ commands \\ used

\end{tabular} versus tables

\begin{tabular}[t]{|l|}

\hline

with some \\ hline \\ commands \\

\hline

\end{tabular} used.

Using \firsthline and \lasthline will cure the problem, and the tables will\firsthline

\lasthline align properly as long as their first or last line does not contain extremely large
objects.

Tables with no
line
commands
used

versus

tables with some
line
commands

used.

Tables

\begin{tabular}[t]{l}

with no\\ line \\ commands \\ used

\end{tabular} versus tables

\begin{tabular}[t]{|l|}

\firsthline

with some \\ line \\ commands \\

\lasthline

\end{tabular} used.

The implementation of these two commands contains an extra dimension, which\extratabsurround

is called \extratabsurround, to add some additional space at the top and the
bottom of such an environment. This is useful if such tables are nested.

2 Final Comments

2.1 Handling of rules

There are two possible approaches to the handling of horizontal and vertical rules
in tables:

1. rules can be placed into the available space without enlarging the table, or

2. rules can be placed between columns or rows thereby enlarging the table.

array.sty implements the second possibility while the default implementation in
the LATEX kernel implements the first concept. Both concepts have their merrits
but one has to be aware of the individual implications.

• With standard LATEX adding rules to a table will not affect the width or
height of the table (unless double rules are used), e.g., changing a preamble
from lll to l|l|l does not affect the document other than adding rules to
the table. In contrast, with array.sty a table that just fit the \textwidth

might now produce an overfull box.

• With standard LATEX modifying the width of rules could result in ugly look-
ing tables because without adjusting the \tabcolsep, etc. the space between
rule and column could get too small (or too large). In fact even overprinting
of text is possible. In contrast, with array.sty modifying any such length
usually works well as the actual visual white space (from \tabcolsep, etc.)
does not depend on the width of the rules.

• With standard LATEX boxed tabulars actually have strange corners because
the horizontal rules end in the middle of the vertical ones. This looks very
unpleasant when a large \arrayrulewidth is chosen. In that case a simple
table like

4

\setlength{\arrayrulewidth}{5pt}

\begin{tabular}{|l|}

\hline A \\ \hline

\end{tabular}

will produce something like

A instead of A

2.2 Comparisons with older versions of array.sty

There are some differences in the way version 2.1 treats incorrect input, even if
the source file does not appear to use any of the extra features of the new version.

• A preamble of the form {wx*{0}{abc}yz} was treated by versions prior to
2.1 as {wx}. Version 2.1 treats it as {wxyz}

• An incorrect positional argument such as [Q] was treated as [c] by
array.sty, but is now treated as [t].

• A preamble such as {cc*{2}} with an error in a ∗-form will generate different
errors in the new version. In both cases the error message is not particularly
helpful to the casual user.

• Repeated < or > constructions generated an error in earlier versions, but are
now allowed in this package. >{〈decs1 〉}>{〈decs2 〉} is treated the same as
>{〈decs2 〉〈decs1 〉}.

• The \extracolsep command does not work with the old versions of
array.sty, see the comments in array.bug. With version 2.1 \extracolsep
may again be used in @-expressions as in standard LATEX, and also in !-
expressions (but see the note below).

2.3 Bugs and Features

• Error messages generated when parsing the column specification refer to the
preamble argument after it has been re-written by the \newcolumntype

system, not to the preamble entered by the user. This seems inevitable with
any system based on pre-processing and so is classed as a feature.

• The treatment of multiple < or > declarations may seem strange at
first. Earlier implementations treated >{〈decs1 〉}>{〈decs2 〉} the same as
>{〈decs1 〉〈decs2 〉}. However this did not give the user the opportunity of
overriding the settings of a \newcolumntype defined using these declarations.
For example, suppose in an array environment we use a C column defined
as above. The C specifies a centred text column, however >{\bfseries}C,
which re-writes to >{\bfseries}>{$}c<{$} would not specify a bold col-
umn as might be expected, as the preamble would essentially expand to
\hfil\bf#$ $\hfil and so the column entry would not be in the scope
of the \bfseries ! The present version switches the order of repeated dec-
larations, and so the above example now produces a preamble of the form
\hfil$ $\bfseries#$ $\hfil, and the dollars cancel each other out without
limiting the scope of the \bfseries.

• The use of \extracolsep has been subject to the following two restrictions.
There must be at most one \extracolsep command per @, or ! expression
and the command must be directly entered into the @ expression, not as part
of a macro definition. Thus \newcommand{\ef}{\extracolsep{\fill}}

. . . @{\ef} does not work with this package. However you can use some-
thing like \newcolumntype{e}{@{\extracolsep{\fill}} instead.

5

• As noted by the LATEX book, for the purpose of \multicolumn each column
with the exception of the first one consists of the entry and the following

inter-column material. This means that in a tabular with the preamble
|l|l|l|l| input such as \multicolumn{2}{|c|} in anything other than
the first column is incorrect.

In the standard array/tabular implementation this error is not so noticeable
as that version contains negative spacing so that each | takes up no horizon-
tal space. But since in this package the vertical lines take up their natural
width one sees two lines if two are specified.

References

[1] M. Goossens, F. Mittelbach and A. Samarin. The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[2] D. E. Knuth. The TEXbook (Computers & Typesetting Volume A). Addison-
Wesley, Reading, Massachusetts, 1986.

[3] L. Lamport. LATEX — A Document Preparation System. Addison-Wesley,
Reading, Massachusetts, 1986.

6

