
The tabularx package∗

David Carlisle
carlisle@cs.man.ac.uk

1995/03/20

Abstract

A new environment, tabularx, is defined, which takes the same argu-

ments as tabular*, but modifies the widths of certain columns, rather than

the inter column space, to set a table with the requested total width. The

columns that may stretch are marked with the new token X in the preamble

argument.

This package requires the array package.

1 Introduction

This package implements a version of the tabular environment in which the widths
of certain columns are calculated so that the table is is a specified width. Requests
for such an environment seem to occur quite regularly in comp.text.tex.

\begin{tabularx}{〈width〉}{〈preamble〉}tabularx

The arguments of tabularx are essentially the same as those of the standard
tabular* environment. However rather than adding space between the columns
to achieve the desired width, it adjusts the widths of some of the columns. The
columns which are affected by the tabularx environment should be denoted with
the letter X in the preamble argument. The X column specification will be con-
verted to p{〈some value〉} once the correct column width has been calculated.

2 Examples

The following table is set with \begin{tabularx}{250pt}{|c|X|c|X|} ....

Multicolumn entry! THREE FOUR
one The width of

this column
depends on the
width of the
table.1

three Column four will
act in the same
way as column
two, with the
same width.

If we change the first line to \begin{tabularx}{300pt}{|c|X|c|X|} we get:

Multicolumn entry! THREE FOUR
one The width of this

column depends on
the width of the table.

three Column four will act
in the same way as
column two, with the
same width.

∗This file has version number v2.02, last revised 1995/03/20.
1You can now use \footnote inside tabularx!

1



3 Differences between tabularx and tabular*

These two environments take the same arguments, to produce a table of a specified
width. The main differences between them are:

• tabularx modifies the widths of the columns, whereas tabular* modifies
the widths of the inter-column spaces.

• tabular and tabular* environments may be nested with no restriction,
however if one tabularx environment occurs inside another, then the inner
one must be enclosed by { }.

• The body of the tabularx environment is in fact the argument to a com-
mand, and so certain constructions which are not allowed in command ar-
guments (like \verb) may not be used.2

• tabular* uses a primitive capability of TEX to modify the inter column space
of an alignment. tabularx has to set the table several times as it searches
for the best column widths, and is therefore much slower. Also the fact that
the body is expanded several times may break certain TEX constructs.

4 Customising the behaviour of tabularx

4.1 Terminal output

If this declaration is made, say in the document preamble, then all following\tracingtabularx

tabularx environments will print information about column widths as they re-
peatedly re-set the tables to find the correct widths.

As an alternative to using the \tracingtabularx declaration, either of the op-
tions infoshow or debugshow may be given, either in the \usepackage command
that loads tabularx, or as a global option in the \documentclass command.

4.2 The environment used to typeset the X columns

By default the X specification is turned into p{〈some value〉}. Such narrow
columns often require a special format, this may be achieved using the > syn-
tax of array.sty. So for example you may give a specification of >{\small}X.
Another format which is useful in narrow columns is ragged right, however LATEX’s
\raggedright macro redefines \\ in a way which conflicts with its use in a tab-
ular or array environments. For this reason this package introduces the com-\arraybackslash

mand \arraybackslash, this may be used after a \raggedright, \raggedleft
or \centering declaration. Thus a tabularx preamble may specify
>{\raggedright\arraybackslash}X.

These preamble specifications may of course be saved using the command,\newcolumntype

\newcolumntype, defined in array.sty. Thus we may say
\newcolumntype{Y}{>{\small\raggedright\arraybackslash}X}

and then use Y in the tabularx preamble argument.
The X columns are set using the p column which corresponds to \parbox[t].\tabularxcolumn

You may want them set using, say, the m column, which corresponds to
\parbox[c]. It is not possible to change the column type using the > syntax,
so another system is provided. \tabularxcolumn should be defined to be a macro
with one argument, which expands to the tabular preamble specification that you
want to correspond to X. The argument will be replaced by the calculated width
of a column.

The default is \newcommand{\tabularxcolumn}[1]{p{#1}}. So we may
change this with a command such as:
\renewcommand{\tabularxcolumn}[1]{>{\small}m{#1}}

2Since Version 1.02, \verb and \verb* may be used, but they may treat spaces incorrectly,
and the argument can not contain an unmatched { or }, or a % character.

2



4.3 Column widths

Normally all X columns in a single table are set to the same width, however it is
possible to make tabularx set them to different widths. A preamble argument of
{>{\hsize=.5\hsize}X>{\hsize=1.5\hsize}X} specifies two columns, the sec-
ond will be three times as wide as the first. However if you want to play games
like this you should follow the following two rules.

• Make sure that the sum of the widths of all the X columns is unchanged. (In
the above example, the new widths still add up to twice the default width,
the same as two standard X columns.)

• Do not use \multicolumn entries which cross any X column.

As with most rules, these may be broken if you know what you are doing.

3


