
OPTIMIZATION TECHNOLOGY CENTER

PCx User Guide (Version 1.1)1

by

Joseph Czyzyk, Sanjay Mehrotra, Michael Wagner, and Stephen J. Wright

Technical Report OTC 96/01

November 3, 1997

ABSTRACT

We describe the code PCx, a primal-dual interior-point code for linear programming. Informa-
tion is given about problem formulation and the underlying algorithm, along with instructions
for installing, invoking, and using the code. Computational results on standard test problems
are tabulated. The current version number is 1.1.

Key words: linear programming, interior-point methods, software.

1 This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram

of the Office of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-

Eng-38.

1 Introduction

PCx is a linear programming solver developed at the Optimization Technology Center at Ar-
gonne National Laboratory and Northwestern University. It implements a variant of Mehrotra’s
predictor-corrector algorithm [8] with the higher-order correction strategy of Gondzio [4]. This
approach is the most effective one known at present for general linear programs. The bulk of
PCx is written in the C programming language. Its main computational operation—solution of a
sparse linear system of equations at each iteration—is performed by a call to the sparse Cholesky
package of Ng and Peyton [9], which is programmed in Fortran 77. Source codes for both PCx
and the Ng-Peyton linear equations solver can be found in the PCx distribution file. They are
available subject to the qualifications in the copyright statement on the PCx home page on the
World Wide Web (see Section 7).

Key features of PCx include

• a set of high-level data structures for linear programming constructs, designed for possible
reuse in other codes;

• ability to be invoked both as a stand-alone program (with input from an MPS file) and as
a callable procedure;

• a presolver;

• modular structure, which makes it easy for users to modify the code to experiment with
variants of the current algorithm; and

• a simple interface to the linear equations solver, which allows straightforward linking of
alternative solvers to the body of PCx.

The current version of PCx performs efficiently on the standard netlib test problems. Nev-
ertheless, PCx should be viewed as work in progress. Features such as finite termination/basis
recovery and alternative linear algebra solvers (and alternative formulations of the step equations)
may be added in future versions. In making the source available, we encourage others to become
involved in the development and extension of PCx.

The remaining sections of this guide contain an outline of the underlying algorithm, instruc-
tions for installing and using PCx, and computational results on standard test problems. Section 2
describes the various linear programming formulations that are accommodated by the data struc-
tures of PCx, including the formulation to which the algorithm is actually applied. Section 3
describes the algorithm, including details of termination and infeasibility detection. Section 4
discusses the major computational issue in the code—factorization of a sparse, positive definite
matrix—including the modifications to the Ng-Peyton code [9] needed in this context. (Alterna-
tive factorization modules to the Ng-Peyton code will require similar modifications.) Presolver
capabilities are outlined in Section 5. The user can set various algorithmic options and control
the amount and type of output by means of a specifications file; details are provided in Section 6.
Section 7 contains instructions for installing the code in a Unix environment, while instructions
for invoking PCx as a stand-alone solver are given in Section 8. Section 9 is a brief description

1

of the interface with the sparse Cholesky solver, showing the user how alternative solvers can be
hooked up to PCx without the need to understand or modify the bulk of the code. (In addition
to the Ng-Peyton solver, the PCx distribution contains the routines needed to link to IBM’s
WSSMP solver [5]. Unlike the Ng-Peyton solver, the WSSMP library is proprietary and must be
obtained separately.) Finally, Section 10 reports on computational results for the standard netlib
test set of feasible and infeasible problems, together with some new problems arising from the
NEMS project at Argonne.

This guide will be updated continually as new releases of PCx are made available.

2 The Formulation

PCx accepts any valid linear program that can be specified in the MPS format. The model
described in the MPS file may include upper and lower bounds, linear equality constraints, linear
inequality constraints and free variables. PCx defines a data structure MPStype that contains a
complete specification of a single linear programming problem in this general formulation. This
data structure also stores the names assigned to the rows, columns, and objectives of the model
specified in the MPS file.

For algorithmic purposes, however, it is convenient to work with a simpler formulation of the
linear program. PCx converts the general formulation to the following simpler form:

min
x∈Rn

cT x subject to Ax = b
0 ≤ xi, i ∈ N
0 ≤ xi ≤ ui, i ∈ U
xi free, i ∈ F ,

(1)

where N ∪U ∪F is a partition of the index set {1, 2, . . . , n} into “normal,” “upper-bounded,” and
“free” variables, respectively. The PCx data structure LPtype contains a single linear program
in the form (1). The transformation from an MPStype formulation to an LPtype formulation is
carried out internally and transparently to the user by PCx. After the solution has been found,
the transformation from MPStype to LPtype is inverted to express the solution in terms of the
original formulation.

Users who circumvent the MPS file and call the procedure PCx() directly must specify their
problems in the form (1). That is, they pass an LPtype data structure to this procedure.

The current version of PCx carries out one more level of problem transformation before
invoking the solution algorithm. The use of a normal equations formulation of the step equations
(see below) implies that the model can contain no free variables. Hence, we replace each of the
free variables xi in the LPtype formulation by a pair of normal variables x+

i and x−
i , making the

substitution
xi = x+

i − x−
i .

After these substitutions are made (and the notation is redefined), the linear program has the
following form:

min
x∈Rn

cT x subject to Ax = b
0 ≤ xi ≤ ui, i ∈ U
0 ≤ xi, i ∈ Ū ,

(2)

2

where Ū = {1, 2, . . . , n}\U . The split variables are recombined before return from PCx(), so the
transformation between (1) and (2) is transparent to the user. The LPtype data structure is also
used to store problems in the form (2).

The dual problem associated with (2) is

max
π∈Rm,r∈R|U|,s∈Rn

bT π −
∑

i∈U

uiri (3)

subject to AT
i·π + si − ri = ci i ∈ U

AT
i·π + si = ci i ∈ Ū

(r, s) ≥ 0,

where π is the Lagrange multiplier vector for the equality constraint Ax = b, and r represents the
Lagrange multipliers for the upper bounds xi ≤ ui. The Karush-Kuhn-Tucker (KKT) optimality
conditions for (2) and (3) are

AT
i·π + si − ri = ci, i ∈ U (4a)

AT
i·π + si = ci, i ∈ Ū (4b)

Ax = b (4c)

xi + wi = ui, i ∈ U , (4d)

xisi = 0, i = 1, 2, . . . , n, (4e)

wiri = 0, i ∈ U , (4f)

(x, s, r, w) ≥ 0. (4g)

(We have introduced a vector w of slack variables for the constraint xi ≤ ui.)
Like all infeasible-primal-dual algorithms, the version of Mehrotra’s algorithm implemented

by PCx generates a sequence of iterates

(xk, πk, sk, rk, wk), k = 0, 1, 2, . . . ,

that satisfy the strict positivity condition (xk, sk, rk, wk) > 0. However, these points are usually
infeasible; that is, the equality conditions (4a),(4b),(4c) are satisfied only in the limit as k → ∞.
Compliance with the complementarity conditions (4e),(4f) is measured by the duality measure µ,
defined by

µ =

∑

i=1,...,n xisi +
∑

i∈U wiri

n + |U|
. (5)

Note that µ is the average value of all the pairwise products xisi, i = 1, 2, . . . , n, and riwi, i ∈ U .
For simplicity in describing the algorithm, we assume in the remainder of the paper that all

primal variables have upper bounds, that is, U = {1, 2, . . . , n}. The primal and dual problems
can be stated in this case as

min
x∈Rn

cT x subject to Ax = b, 0 ≤ x ≤ u, (6)

3

and
max

π∈Rm,r∈Rn,s∈Rn
bT π − rT u subject to AT π + s − r = c, (r, s) ≥ 0. (7)

The KKT conditions for (6) and (7) are

Aπ + s − r = c, (8a)

Ax = b, (8b)

x + w = u, (8c)

xisi = 0, i = 1, 2, . . . , n, (8d)

wiri = 0, i = 1, 2, . . . , n, (8e)

(x, s, r, w) ≥ 0. (8f)

We stress that the PCx code actually works with the formulation (2); we use the simpler form
(6) in our discussion solely to avoid creating a notational jungle in the next few sections.

3 The Algorithm

Mehrotra’s predictor-corrector algorithm [8] is based on Newton’s method for the KKT conditions
(4a)–(4e), modified to retain positivity of the (x, s, r, w) components, to incorporate a “centering”
component in the search direction, and to improve the order of accuracy to which the search
direction approximates the nonlinear equations (4d) and (4e). We mention just the major elements
of the algorithm in this section and the next. For further details and motivation, see Wright [11].

The search direction at each iteration of Mehrotra’s algorithm is obtained by solving two
systems of linear equations, which have the same coefficient matrix but different right-hand sides.
If we assume for simplicity that U in (2) is the entire index set {1, 2, . . . , n}, these step equations

have the form














0 A 0 0 0
AT 0 I 0 −I
0 I 0 I 0
0 S X 0 0
0 0 0 R W





























∆π
∆x
∆s
∆w
∆r















=















−rb

−rc

−ru

−rxs

−rwr















. (9)

Here A is the constraint matrix from the linear program, X = diag(x), S = diag(s), W = diag(w),
and R = diag(r). The coefficient matrix is simply the Jacobian of the nonlinear equations defined
by (4a)–(4e). The right-hand side for the first system of equations chooses ru, rc, and rb to be
the residuals for the upper-bound, dual, and primal infeasibilities, respectively; that is,

ru = x + w − u, rc = AT π + s − r − c, rb = Ax − b. (10)

For the other right-hand side components, this first system uses

rxs = XSe, rrw = RWe, (11)

4

so that the solution (∆xaff ,∆πaff ,∆saff ,∆raff ,∆waff) of this first system is the pure Newton
direction for the nonlinear system of equations (4a)–(4e). This direction is often known as the
affine-scaling direction.

The second direction is a combined centering-corrector direction, which we denote by

(∆xcc,∆πcc,∆scc,∆rcc,∆wcc).

To obtain this direction, we set the right-hand side components of (9) as follows:

ru = 0, rc = 0, rb = 0, (12)

rxs = ∆Xaff∆Saffe − σµe, rrw = ∆Raff∆W affe − σµe, (13)

where µ is defined in (5) and ∆Xaff , ∆Saff , ∆Raff , and ∆W aff are the diagonal matrices con-
structed from the affine-scaling step components ∆xaff , ∆saff , ∆raff , and ∆waff , respectively. The
scalar σ ∈ [0, 1] in (12) is chosen by a complicated heuristic that is based on the ability of the
pure affine-scaling step to attain large reductions in the duality measure µ before reaching the
boundary of the positive orthant for the (x, s, r, w) components. Given the affine-scaling step, we
calculate the maximum step to this boundary in primal and dual variables from the definitions

αaff,P = inf{α ∈ [0, 1] | (x,w) + α(∆xaff ,∆waff) ≥ 0}, (14a)

αaff,D = inf{α ∈ [0, 1] | (s, r) + α(∆saff ,∆raff) ≥ 0}. (14b)

We then compute the duality measure µaff at this point as

µaff =
1

2n

[

(x + αaff,P∆x)T (s + αaff,D∆s) + (w + αaff,P∆w)T (r + αaff,D∆r)
]

. (15)

Finally, the value of σ is chosen to be

σ =

(

µaff

µ

)3

. (16)

The actual search direction is obtained by simply adding the affine-scaling direction to the
centering-corrector direction; that is,

(∆x,∆π,∆s,∆r,∆w) = (∆xaff ,∆saff ,∆raff ,∆waff) + (∆xcc,∆πcc,∆scc,∆rcc,∆wcc). (17)

The step taken by the algorithm is then a fraction of the maximum steps αmax,P, αmax,D to the
boundary in the primal and dual variables, respectively. Similarly to (14), we calculate

αmax,P = inf{α ∈ [0, 1] | (x,w) + α(∆x,∆w) ≥ 0}, (18a)

αmax,D = inf{α ∈ [0, 1] | (s, r) + α(∆s,∆r) ≥ 0}, (18b)

and set
αP = γP ∗ αmax,P, αD = γD ∗ αmax,D, (19)

where γP and γD are two scaling factors obtained from Mehrotra’s adaptive steplength heuristic
[8, p. 588].

Having described all the ingredients, we can summarize the algorithm as follows:

5

Given (x0, π0, s0, r0, w0) with (x0, s0, r0, w0) > 0;
for k = 0, 1, 2, . . .

if termination test is satisfied
stop;

Set (x, π, s, r, w) = (xk, πk, sk, rk, wk) and calculate the affine-scaling direction
from (9) by setting the right-hand side as in (10), (11);

calculate αaff,P, αaff,D, µaff and σ from (14), (15), and (16);
Calculate the centering-corrector step from (9) by setting the right-hand

side as in (12);
Calculate the search direction from (17);
Calculate αP, αD from (18) and (19);
Calculate new iterate as

(xk+1, wk+1) = (x,w) + αP(∆x,∆w), (20a)

(πk+1, sk+1, rk+1) = (π, s, r) + αD(∆π,∆s,∆r); (20b)

end (for).

Gondzio’s [4] higher-order correction strategy is used to enhance the search direction at each
iteration. In this approach, additional centering/correction directions are computed by solving (9)
for different right-hand sides. Rather than attempting to correct the current point to the central
path in a single step, Gondzio’s strategy is more conservative, aiming only to bring the pairwise
products xisi, i = 1, 2, . . . , n and riwi, i ∈ U that are much larger than the average µ more into
line. The number of centering/correction directions depends on the ratio of time required to form
and factor the coefficient matrix of the main linear system (see Section 4) to the time required to
perform triangular substitutions with the factors. This ratio is machine dependent and therefore
leads to different results on different architectures. We refer the interested reader to Gondzio’s
paper for details. Our implementation draws not only on this paper and also on Gondzio’s code
HOPDM (version 2.13), in which slightly different heuristics from those described in the paper
are used.

Our code applies the scaling technique of Curtis and Reid [2] to the coefficient matrix A before
solving. This technique aims to minimize the deviation of the nonzero elements in the matrix
from 1, which it measures by the objective function

∑

Aij 6=0

log2 |Aij |.

It finds row and column scaling factors ρi, i = 1, 2, . . . ,m and χj , j = 1, 2, . . . , n such that the
scaled version of A (whose elements are Aij/(ρiχj)) minimizes this objective. Conjugate gradient
turns out to be very effective when applied to the least squares problem of finding the ρi and χj

factors, and convergence to an approximate solution of adequate accuracy is usually achieved in
three or four iterations.

Scaling generally improves the efficiency of the algorithm, but occasionally results in poorer
performance. It can be disabled by the user, as we show in Section 6.

6

The algorithm terminates in one of four states: optimal, infeasible, unknown, and suboptimal.
Optimal termination occurs when the current iterate satisfies the following tests:

‖(rb, ru)‖

1 + ‖(bT , uT)‖
≤ prifeastol,

‖rc‖

1 + ‖c‖
≤ dualfeastol,

∣

∣

∣cT x −
(

bT π −
∑

i∈U uiri

)
∣

∣

∣

1 + |cT x|
≤ opttol,

where prifeastol, dualfeastol, and opttol are three tolerances whose default values are 10−8,
10−8, and 10−8, respectively.

For the remaining termination conditions, we make use of a merit function φ defined by

φ(π, x, s, w, r) =
‖(rb, ru)‖

max(1, ‖(b, u)‖)
+

‖rc‖

max(1, ‖c‖)
+

∣

∣

∣cT x −
(

bT π −
∑

i∈U uiri

)∣

∣

∣

max(1, ‖(b, u)‖, ‖c‖)
.

Clearly, points (π, x, s, w, r) at which (x, s, w, r) ≥ 0 and φ = 0 are primal-dual solutions of (6),
(7) and vice versa. When applied to feasible linear programs (for which a primal-dual solution
is known to exist), φ typically decreases steadily to zero after perhaps oscillating during the first
few iterations. We also maintain an array φmin whose kth element is the smallest value of φ
encountered up to iteration k; that is,

φmin[k] = min
`=0,1,...,k

φ(π`, x`, s`, w`, r`).

Infeasible problems (that is, problems for which no primal-dual solutions exist) can be detected
fairly reliably by a sharp increase in φ. We terminate the algorithm at iteration k with status
infeasible if it fails the optimality test above but satisfies

φ(πk, xk, sk, wk, rk) ≥ max(10−8, 105φmin[k]).

In other situations, the code is unable to resolve the question of feasibility. It exhibits slow
convergence, or else the improvement in duality measure µ far outstrips the improvement in
primal and dual infeasibility (‖(rb, ru)‖ and ‖rc‖, respectively), causing µ to lose its relationship
to the true gap between the primal and dual objective function values. In both these cases, we
terminate the algorithm with status unknown. The slow convergence test is

φmin[k − 30] ≥ 1
2φmin[k] and k ≥ 30.

Blowup in infeasibility-to-duality ratio is flagged if we have

‖(rk
b , rk

u)‖

1 + ‖(bT , uT)‖
> prifeastol or

‖rk
c ‖

1 + ‖c‖
> dualfeastol,

7

and, in addition,
max(‖(rk

b , rk
u)‖, ‖rk

c ‖)/µk

max(‖(r0
b , r

0
u)‖, ‖r0

c‖)/µ0
≥ 106.

Finally, we terminate in suboptimal status if the algorithm exceeds its allotted maximum
number of iterations (see iterationlimit in Section 6) without satisfying any of the conditions
above.

4 Linear Algebra

The coefficient matrix in (9) is sparse and highly structured. With the exception of the A and
AT blocks, all blocks are either zero or diagonal. By performing simple block elimination on
this system, we obtain the following alternative formulation of the step equations, known as the
augmented system form:

[

−D−2 AT

A 0

] [

∆x
∆π

]

=

[

−rc − W−1rwr + X−1rxs + W−1Rru

−rb

]

, (21)

where D is the positive diagonal matrix defined by D =
(

S−1X + W−1R
)1/2

. The remaining
components ∆w, ∆r, and ∆s of the solution vector can be recovered as follows:

∆w = −ru − ∆x

∆r = −W−1(R∆w + rwr) (22)

∆s = −X−1(S∆x + rxs).

The system (21) can be reduced to an even more compact form as follows by eliminating ∆x to
obtain

AD2AT ∆π = −rb + AD2(−rc − W−1rwr + X−1rxs + W−1Rru). (23)

The component ∆x can be recovered from

∆x = D2(AT ∆π − (−rc − W−1rwr + X−1rxs + W−1Rru)), (24)

while the remaining step components can be obtained as before from (22).
The default version of PCx uses the formulation (23), which is often known as the normal

equations form. A sparse Cholesky algorithm is used to factor the coefficient matrix AD2AT ,
and the solution ∆π is obtained by performing triangular substitutions with the Cholesky factor
L. These factorizations and triangular substitutions dominate the computational cost of the
algorithm. The default PCx uses the sparse Cholesky solver of Ng and Peyton [9], modified
slightly to handle the small pivot elements that frequently arise during later iterations of the
interior-point method. This code produces a factorization of the form

P (AD2AT)P T = LLT , (25)

where P is a permutation matrix (determined independently of the numerical values in AD2AT

during an ordering step) and L is a lower triangular matrix.

8

Ng and Peyton’s code uses a multiple minimum degree ordering strategy identical to the
one in SPARSPAK. This strategy was introduced by Liu [6]. The scheme used for symbolic
factorization is partly described by Liu [7] and Gilbert, Ng, and Peyton [3]. The numerical
factorization is performed by a left-looking block sparse Cholesky algorithm, as described by Ng
and Peyton [9]. The code exploits hierarchical memory by splitting the supernodes into blocks
that fit into available cache. (Cache size is passed to the code as a parameter.) Loop unrolling
is used to make better use of registers. The release of Ng and Peyton’s code used here is version
0.4 of May 1995.

Release 1.1 of PCx also contains a link the IBM code WSSMP, described by Gupta, Joshi, and
Kumar [5]. This is a multifrontal sparse Cholesky package which uses a nested dissection ordering,
and it appears to be especially effective for larger problems. WSSMP is currently supplied in the
form of libraries for IBM RS6000 architectures. This is a proprietary code; send mail to Anshul
Gupta (gupta@watson.ibm.com) for more information.

Since the nonzero structure of the matrix that we factor is the same at each interior-point
iteration, the ordering and symbolic factorization operations are carried out just once, during
computation of the initial point. At each interior-point iteration, the numerical factorization is
performed once. Two back-substitutions are performed with these computed factors: one for the
affine-scaling step, and one for the corrector-centering step.

Our modification of the Ng-Peyton code for small pivots requires just a handful of additional

lines of Fortran. A candidate pivot M
(i−1)
ii is deemed to be “small” if

M
(i−1)
ii ≤ 10−30 max

j=1,2,···,m
M2

jj, (26)

where M (i−1) is the remaining submatrix after i − 1 steps of the Cholesky factorization and M
is the original symmetric positive semidefinite matrix. Each small pivot is replaced by the very
large number 10128. This substitution causes the off-diagonal elements in the ith column of the
Cholesky factor L to be extremely small (essentially zero) and causes the ith component of the
solution vector to be extremely small. Analysis of this technique has been performed by Wright
[10].

A similar pivot modification strategy is used by the MATLAB-based code LIPSOL (see Zhang
[12],[13]), which also uses Ng and Peyton’s code as its computational engine.

If the matrix A contains dense columns, the product AD2AT may be much denser than
A itself, causing the unadorned normal equations strategy to be inefficient. We modify this
strategy by excluding the dense columns from the computation of AD2AT and accounting for
them instead by using the Sherman-Morrison-Woodbury inverse updating formula. At the start
of the PCx algorithm, during computation of the initial point, we partition A into “sparse” and
“dense” column submatrices Asp and Aden, respectively. The diagonal weighting matrix D can
be partitioned accordingly into Dsp and Dden, so we can write

AD2AT = AspD
2
spAT

sp + AdenD2
denAT

den = M + AdenD2
denAT

den, (27)

where we have defined M in an obvious way. By applying the Sherman-Morrison-Woodbury
formula to (27), we find that

[M + AdenD2
denAT

den]−1

9

= M−1 − (M−1Aden)
[

D−2
den + AT

denM−1Aden

]−1
AT

denM−1. (28)

We apply the sparse Cholesky procedure to M alone, to obtain

PMP T = LLT , (29)

(cf. (25)). The solution of a linear system with coefficient matrix M and right-hand side r can
now be written as

(AD2AT)−1r

= P T L−T
{

I − L−1PAden

[

D−2
den + AT

denP T L−TL−1PAden

]−1
AT

denP T L−T
}

L−1Pr.

Given L and P , the major costs of applying this formula are the cost of computing (L−1PAden),
the cost of a triangular substitution with L and one with LT —a total cost of nden + 2 triangular
substitutions, where nden is the number of columns in Aden. For additional systems with the
same coefficient matrix but different right-hand sides, the marginal cost is just two triangular
substitutions.

To determine which columns are to be classified as “dense,” we sort in decreasing order
an array whose components are the number of nonzeros in each column. We then look at the
columns for which the proportion of nonzeros is at least τ , where τ = 1 for m < 500, τ = 0.1
for 500 < m ≤ 2000, and τ = 0.05 for m > 2000, and try to identify a gap in the sequence
of nonzero counts. (In our experience, most problems that benefit from special handling of the
dense columns exhibit such a gap.) Columns whose nonzero counts lie on the high side of the gap
are classified as “dense.”

Another feature of PCx version 1.1 is the use of a preconditioned conjugate gradient (PCG)
algorithm to improve the accuracy of computed solutions for the linear system (23). Essentially,
we use the computed Cholesky factorization (25) (or (29)) as the preconditioner and treat the
computed solution as the first iteration of a PCG algorithm. The PCG algorithm is activated if the
computed solution fails to reduce the residual by a factor primalfeastol or better (see Section 6),
and if no small pivot modifications are required during the Cholesky factorization. If dense
columns are detected in A, PCG terminates when the residual reduction factor primalfeastol

is achieved, or after a maximum of 10nden PCG iterations, whichever comes first. If no dense
columns are present in A, at most 10 PCG iterations are allowed.

5 The Presolver

Linear programming models frequently contain redundant information, as well as other informa-
tion and structure that allows some components of the solution to be determined without recourse
to a sophisticated algorithm. The purpose of presolve or preprocessing routines is to detect and
handle these features of the input, producing a (smaller) problem to be solved by the actual linear
programming algorithm. Presolvers significantly enhance the efficiency and robustness of both
simplex and interior-point codes.

10

The presolver in PCx works with the formulation (1) stored in the LPtype data structure.
It makes use of techniques described by Andersen and Andersen [1], checking the data for the
following features:

Infeasibility. Check that ui ≥ 0 for each upper bound ui, i ∈ U , and that a zero row of A has
a corresponding zero in the right-hand side vector b.

Empty Rows. If the matrix A has a zero row and a corresponding zero in the b, it can be
removed from the problem.

Duplicate Rows. When a row of A (and the corresponding element of the right-hand side b) is
simply a multiple of another row, we can delete it without affecting the primal solution.

Duplicate Columns. When a column of A is a multiple of another column, and if the two
variables xi and xj are “normal” (that is, i, j ∈ N in the formulation (2)), the two columns
can be combined. The primal variable for the combined column is either normal or free,
depending on whether the columns are positive or negative multiples of each other.

Empty Columns. The corresponding element xi can be fixed at either its lower or upper bound,
depending on the sign of the cost vector coefficient ci. If the required bound does not exist,
the problem is declared to be primal unbounded.

Fixed Variables. If the variable has lower and upper bounds both zero, it can obviously be
fixed at zero and removed from the problem.

Singleton Rows. If the ith row of A contains the single nonzero element Aij , we clearly have
xj = bi/Aij , so this variable can be removed from the problem. The ith row of A (and
hence the dual variable πi) can also be removed.

Singleton Columns. When Aij is the only nonzero in column j of A, and xj is a free variable,
we can express xj in terms of the other variables represented in row i of A and eliminate
it from the problem. Even if not free, xj can be eliminated if its bounds are weaker than
those implied by the ranges of the other elements represented in the row Ai·.

Forced Rows. Sometimes, the linear constraint represented by row i of A forces all its variables
to either their upper or lower bounds. An example would be the constraint 10x3 − 4x10 +
x12 = −4 subject to the bounds

x3 ∈ [0,+∞), x10 ∈ [0, 1], x12 ∈ [0,+∞).

In this case, we must have x3 = 0, x10 = 1 and x12 = 0, so these three variables (and the
corresponding row of A) can be eliminated.

The presolver makes multiple passes through the data, checking for each of the above features
in turn. Problem reductions on one pass frequently uncover further reductions that are detected
on subsequent passes. The presolver terminates when a complete pass is performed without
detecting further opportunities for reduction. Each reduction operation is pushed onto a stack,

11

which is subsequently popped after the solution of the reduced linear program is found. The effect
of popping the stack is to express the solution in terms of the original, unreduced formulation.

Despite the complexity of the code, the presolver requires little CPU time in comparison with
a single iteration of the interior-point solver.

Code for the presolver can be found in the file presolve.c. The data structures are defined
in pre.h. This code can be used on a stand-alone basis, independently of the PCx solver, to
presolve any linear program supplied in the LPtype format.

6 Specifications File

PCx allows many algorithmic parameters and options to be set by the user. These quantities are
stored internally in a data structure of type Parameters.

If the user provides input to PCx via an MPS file (rather than invoking PCx() directly via a
subroutine call), the Parameters data structure is allocated automatically by the program and
default values are assigned to all parameters. You can override the default values by defining a
specifications file, which contains a number of keywords and numerical values.

PCx searches for the specifications file in a number of locations. If the name of the MPS input
file is probname.mps, PCx looks for the following files, in order:

probname.spc, probname.specs, spc, specs, PCx.specs

If more than one of these files exist, PCx uses the first file in the list above and ignores the others.
The following is a list of keywords that can be used in the specifications file, together with

their default settings. The file should contain one such keyword per line, together with its
corresponding numerical value or option, if appropriate. The file is processed sequentially from
top to bottom, so the effect of any line in the file can be undone by a later line. For keywords
with a yes/no argument, omission of the argument will be taken to mean yes. (The default
setting is not necessarily yes.) In the descriptions below, we assume that PCx is invoked with
the command

PCx probname

boundname {name} Request the bound to be the specific column name in probname.mps. Default:
the first BOUND in the MPS file is used.

cachesize {value} Input the size of the cache on the machine, in Kilobytes. Any value in the
range 0–2048 is acceptable. Specify 0 for Cray machines. This parameter is used by the
Ng-Peyton sparse Cholesky code. Default: 16.

centerexp {value} Specify the exponent to be used for calculation of the centering parameter
σ in (16). Any real value in the range 1.0–4.0 is allowable. Default: 3.0.

dualfeastol {value} Specify a dual feasibility tolerance. Default: 10−8.

history {yes}/{no} Request that a history file be written (yes) or not written (no). If yes,
the file probname.log is written to the working directory (see Section 8).

12

HOCorrections {yes}/{no} Request that Gondzio’s [4] higher-order corrections be used to en-
hance the search direction. Default: yes.

inputdirectory {name} If PCx is to search for the MPS input files in another directory, in
addition to the current working directory, name this other directory here. Remember to
include a trailing “/”. PCx always looks first in the current working directory. If it cannot
find the file there, it looks in the specified input directory. The output and history files
always are written to the working directory.

iterationlimit {value} An upper limit on the number of iterations. Any positive integer is
allowable. Default: 100.

max Maximize the objective.

MaxCorrections {value} If HOCorrections = yes, the parameter MaxCorrections is an upper
limit on the number of Gondzio’s higher-order corrections allowed at each iteration. If
value=0, the maximum is determined automatically by PCx according to the relative cost
of factorization and solve operations. If HOCorrections = no, MaxCorrections is ignored.
Default: 0.

min Minimize the objective (default).

objectivename {name} Request the objective cost vector to be the specific row name in probname.mps.
Default: the first row of type “N” in probname.mps is taken to be the objective.

opttol {value} Specify an optimality tolerance. Default: 10−8.

preprocess {yes}/{no} Synonymous with presolve.

presolve {yes}/{no} Request that presolving be performed (yes) or not performed (no) (see
Section 5). Default: yes.

prifeastol {value} Specify a primal feasibility tolerance. Default: 10−8.

rangename {name} Request the range to be the specific column name in probname.mps. Default:
the first range encountered in the MPS file is used.

refinement {yes}/{no} Perform preconditioned conjugate gradient refinement of the computed
solution to the linear system (23) if it has a relative residual larger than the parameter
prifeastol (yes) or don’t perform any iterative refinement (no) (see Section 4). Default:
no.

rhsname {name} Request the right-hand side to be the specific column name in probname.mps.
Default: the first RHS encountered in the MPS file is used.

scaling {yes}/{no} If yes, row and column scaling is performed on the constraint matrix.
Default: yes.

13

solution {yes}/{no} Request that a solution file be written (yes) or not written (no). If the
solution file is written, it is named probname.out and is placed in the working directory
(see Section 8). Default: yes.

stepfactor {value} Specify a value in the range (0, 1) that is used in Mehrotra’s adaptive
steplength heuristic from [8, p. 118]. This value is a lower bound for γP and γD in (19).
Default: 0.9.

unrollinglevel {value} Specify the level of loop unrolling. Allowable values are 1, 2, 4, and
8. (This parameter is used only in the Ng-Peyton sparse Cholesky code.) Default: 4.

If you call PCx() directly from your own code, you must fill out the Parameters data structure
explicitly. This task is easier if you use the routine *NewParameters() to allocate the storage,
since this routine assigns default values to all parameters. You can then make any desired
alterations before passing the data structure to the PCx() routine.

7 Obtaining and Installing PCx

PCx contains material protectable under copyright laws of the United States. Permission is
hereby granted to use, reproduce, prepare derivative works, and redistribute to others at no
charge, provided that any changes are clearly documented and that the original PCx copyright
notice, Government license and disclaimer are retained; however, any entity desiring permission to
incorporate this software, or a work based on this software, into a product for sale must contact
Paul Betten at the Industrial Technology Development Center, Argonne National Laboratory,
Argonne, IL 60439 (phone: 630/252-4962, fax: 630/252-5230, email: betten@anl.gov). For further
information, refer to the copyright notice on the software.

The source code and documentation for PCx can be obtained through the World Wide Web
and anonymous ftp. The PCx home page is

http://www.mcs.anl.gov/otc/Tools/PCx/

This page lists the Unix systems on which PCx has been compiled and tested, and also contains
the copyright statement. The PCx home page also links to the following three files:

PCx.tar.gz: A gzipped tar file containing the source code, a Makefile, and a README file
containing installation instructions. It also contains a postscript version of this user guide.

PCx-user.ps: A postscript version of this user guide.

results.ps: The tables of computational results from Section 10 of this guide.

Executables for PCx for the SunOS, Solaris, IBM RS/6000 AIX, and SGI IRIX Unix envi-
ronments can be built from source via the following procedure. Download the file PCx.tar.gz

and place it in its own subdirectory (referred to henceforth as the “working directory”). From
the working directory, unzip the file by typing

14

gunzip PCx.tar.gz1

and then un-tar the resulting file by typing

tar xvf PCx.tar

The subdirectories SRC/, DOC/, MAKEARCH/, Ng-Peyton/, mps/ will be created by the tar com-
mand. A sample specifications file named PCx.specs and a number of executable script files will
also appear. To create the executable PCx that uses the default Ng-Peyton solver, type

build

Because of architectural and environmental differences, it is necessary to have a slightly differ-
ent compilation procedure for each machine. The build script defines an environment variable
PCx ARCH and assigns it a value to indicate the architecture. build then invokes the make proce-
dure, with architecture-dependent portions of the makefile being retrieved from the subdirectory
MAKEARCH/. Since the variable PCx ARCH must be defined for compiling, one should always use
build instead of make to compile the program.

Executables are also available for the SunOS, Solaris, AIX, and IRIX systems. The PCx Web
page also contains links to these files.

To test PCx it on one of the input files in the directory mps/, modify the sample specifications
file PCx.specs if desired, then type

PCx afiro

or

PCx 25fv47

The program and documentation files can also be retrieved via anonymous ftp. Go to
ftp.mcs.anl.gov and cd to pub/neos/PCx. The files mentioned above can be found at:

ftp://ftp.mcs.anl.gov/pub/neos/PCx/PCx.tar.gz

ftp://ftp.mcs.anl.gov/pub/neos/PCx/PCx-user.ps

ftp://ftp.mcs.anl.gov/pub/neos/PCx/results/results.ps

The executables can be found at the following URLs:

ftp://ftp.mcs.anl.gov/pub/neos/PCx/sun4/PCx.gz (SunOS)
ftp://ftp.mcs.anl.gov/pub/neos/PCx/solaris/PCx.gz (Solaris)
ftp://ftp.mcs.anl.gov/pub/neos/PCx/rs6000/PCx.gz (RS/6000 AIX)
ftp://ftp.mcs.anl.gov/pub/neos/PCx/irix/PCx.gz (SGI IRIX)
ftp://ftp.mcs.anl.gov/pub/neos/PCx/irix64/PCx.gz (SGI IRIX6.4)
ftp://ftp.mcs.anl.gov/pub/neos/PCx/hp/PCx.gz (Hewlett-Packard HPUX)
ftp://ftp.mcs.anl.gov/pub/neos/PCx/linux/PCx.gz (PC Linux)
ftp://ftp.mcs.anl.gov/pub/neos/PCx/alpha/PCx.gz (DEC Alpha)

1gunzip can be downloaded from ftp://quest.jpl.nasa.gov/pub/ for compilation on a variety of architectures.

15

These executables can be gunzip-ed as described above to produce an executable named PCx.
The transfer mode should be set to binary by using the bin command in ftp before attempting

to transfer PCx.tar.gz or any of the executable files.
If the WSSMP library [5] can be obtained, an executable PCx that calls this library can be

created by placing the library in a directory called ./wssmp and typing

build PCx wssmp

8 Invoking PCx

By downloading and installing PCx on one’s system (see Section 7), the user will have an ex-
ecutable PCx, a Makefile and a build script in the current working directory, together with a
number of subdirectories containing source files for PCx, object files, documentation, and source
files and a library for the Ng-Peyton sparse Cholesky code.

To solve a linear program contained in the MPS file probname.mps, one should go to the
working directory (that is, the directory in which the executable PCx resides) and type

PCx probname

The file probname.mps can reside either in the working directory or in an “input directory” defined
in the specifications file (see Section 6). PCx first searches the input directory (if specified) for
the given file. It searches for the file name both with and without the .mps extension. If it does
not find the file in the input directory, it searches the working directory.

PCx optionally produces two output files named probname.out and probname.log, according
to the options supplied by the user in the specifications file (see Section 6). These files are written
in the working directory. They contain, respectively, the primal-dual point returned by the algo-
rithm (provided the termination status is not infeasible), and a summary of iteration history,
timings, preprocessor results, and sparsity statistics for the Cholesky factorization. Output is also
written to standard output during execution of PCx. Essentially, the on-screen output consists
of the information written to the file probname.log, together with error messages and warnings.

When PCx is executed as a standalone system and a runtime error is detected, the code
returns a nonzero integer to the operating system. The return status indicates the type of error,
as follows:

1: invocation error for PCx;

2: memory allocation error (usually, insufficient storage available);

3: error in the MPS input file;

4: error in the specifications file;

5: error detected during presolve; or

6: error encountered during matrix factorization, conjugate gradient iteration, sparse matrix
multiplication, or dense column linear algebra.

16

The subroutine PCx() can also be invoked directly from user-written code. In this case, the
user should fill out data structures that define the linear program and the algorithmic parameters.
See the source code and the comments therein for details of this mode of use.

9 Interfacing with the Linear Equation Solver

This section deals with more advanced issues for users who want to experiment with different
solvers for the system of linear equations that arises at each iteration. There is no need to read
this part if you are content to run PCx with the default Ng-Peyton solver. If, however, you would
like to try another linear equations solver, this section describes briefly the C code you need to
write to make the connection between the linear equations solver and the main body of PCx.

The C header file solver.h defines the interface between the PCx code proper and the
linear equations solver. This file names the solver-specific routines for storage allocation and for
performing ordering, factorization, and solve operations. The code for these routines actually
appears in another user-supplied file (see next paragraph). The names of the routines are listed
separately in solver.h to make these routines callable from other parts of PCx.

The main requirement on the user is to provide a C file called mysolver.c (in the directory
./SRC) that implements the routines listed in solver.h, together with any auxiliary routines
that they may call. The best way to prepare this file is to examine the two templates provided
with the PCx distribution: the file Ng-Peyton.c, which defines the link to the Ng-Peyton solver,
and wssmp.c, which defines the link to the WSSMP library. All the relevant data is passed into
the routines via the data structure Factor of type FactorType, which is defined in the header
file main.h. This data structure contains a void pointer ptr that can be used to point to solver-
specific information and data solver. In addition, Factor contains the matrix AD2AT , stored in
the usual compressed-sparse-row (CSR) format. (Note that PCx uses Fortran-style indexing, in
which row and column indices start at 1 rather than zero.)

To be a little more specific, the functions that need to be implemented in mysolver.c are
simple memory allocation and deallocation functions for the data structure FactorType, the
function Order(), which performs the symbolic factorization of the coefficient matrix, the function
Factorize(), which performs the numerical factorization, and a function Solve() that uses the
factorization to obtain the solution of the linear system for a given right-hand side.

The other major component to be supplied by the user is a library called libmysolver.a in
the directory ./mysolver. The build script and the Makefile in directory ./SRC assume that
this library is present. If desired, the build script can be altered so that it creates this library
explicitly from a collection of source files, as is done already for the Ng-Peyton solver.

When all the files above are in place, an executable PCx that calls the user-supplied solver can
be created by typing

build PCx mysolver

Recall that if a sparse Cholesky technique is being used in the user-supplied solver, it will
need to contain modifications to handle tiny and negative pivots, similar to the modifications
described in Section 4.

17

To enable performance monitoring for the user-supplied solver and for PCx, uncomment the
line that defines the environment variable TIMING PROFILE at the start of the file main.h. When
this variable is defined, the log file produced by the PCx run will contain detailed information
about how much time was spent in different parts of the code.

10 Computational Results

We have executed PCx version 1.1 successfully in a variety of Unix environments, including

IBM RS6000/370 workstation running AIX, with 128 MB main memory and 350 MB swap
space, running AIX;

Sun SPARCstation-10 running SunOS4.3, with 32 MB main memory;

Sun UltraSparc 2 running Solaris 2.x, with 200 MHz processor, 1 MB cache and 256 MB of
main memory;

SGI workstation running IRIX 5.3, with 250 MHz processor, 2 MB L2-cache, 64 MB main
memory.

SGI workstation running IRIX 6.4, with 195 MHz IP27 processor, 4 MB L2-cache, 4 GB
main memory.

HP9000-735 workstation running HPUX-9.05, with 128 MB main memory and 125 MHz
PA7150 chip.

Pentium Pro PC running PC Linux, with 48 MB main memory.

We report results from the SGI machine running IRIX 6.4. On this machine, the code was
compiled with the default Fortran and C compilers (xlf and cc, respectively), using the -O

optimization flag in both cases.
We solved a large set of test problems, both feasible and infeasible, taken for the most part from

the familiar netlib set. Results obtained with the default parameter settings are shown in Tables
1–3. Each row in the tables contains the dimensions of the problem before and after presolving,
measures of infeasibility and complementarity, the primal objective of the point returned by PCx,
the maximum number of additional centering/corrector steps allowed at each iteration (over and
above the single centering/corrector step of Mehrotra’s algorithm), the number of iterations, and
the CPU time. The tabulated infeasibility measure is a relative measure defined as

max

(

‖(rb, ru)‖

1 + ‖(b, u)‖
,

‖rc‖

1 + ‖c‖

)

,

where rb, ru and rc are the residuals at the final point. The tabulated complementarity measure
is defined as

xT s + (u − x)T r

1 + |cT x|
.

18

Results for the feasible problems are shown in Table 1. In most cases, PCx correctly identified
the problem as feasible and returned an optimal solution. In four cases, the code terminated with
status unknown, though in three of these cases the point returned by the code is quite close to
optimality. No problems were incorrectly flagged as infeasible.

Results for the infeasible problems appear in Tables 2. In two cases, PCx terminates with
status unknown; the correct status infeasible is reported for all other problems. In two other
cases, infeasibility was detected by the preprocessor, so the interior-point solver did not need to
be called at all.

The NEMS problems are instances of models in the National Energy Modeling System (NEMS)
of the Energy Information Administration of the United States Department of Energy [14]. These
problems are taken from NEMS modules which are used to model electricity capacity planning,
petroleum marketing, and coal marketing. PCx solved these problems efficiently, as shown in
Tables 3.

The improvements obtained by using higher-order corrections are not too dramatic. Part of
the reason is that the factorization routine is more efficient relative to the solution routine than
is the case in, for example, HOPDM (see Gondzio [4]). It follows that there is less to be gained
by economizing on matrix factorizations. Significant improvements can however be observed on
several problems, including dfl001, pds-10, NEMSemm1, and NEMSwrld.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Computational and Technology Research, U.S. Department of
Energy, under Contract W-31-109-Eng-38. We acknowledge the contribution of Marc Wenzel,
who programmed the dense-column-handling and conjugate gradient refinement features that
were added for the beta-2.0 release. We are grateful also to Doug Moore for various advice and
for pointing out and repairing many memory leaks in earlier releases, and to Hans Mittelmann
for running many of the benchmark tests and for compiling on various architectures, including
DEC Alpha and Linux. Thanks also to Erling Andersen for helpful advice and comments, and
to Anshul Gupta for helping with the interface to his WSSMP code.

19

Computational results for the netlib test set and the NEMS problems on an R10000
SGI workstation (195 MHz IP27 processor, L2-cache 4MB, Main memory 4GB, running

IRIX 6.4)

Legend: ∗ = terminated with unknown status,
† = infeasibility detected during preprocessing,

max = maximization problems

Table 1: netlib: Feasible netlib problems

Before After Max CPU
Preprocessing Preprocessing Relative Relative Primal Add. Time

Name Rows Cols Rows Cols Infeas Compl Objective Corr. Iters [secs]
25fv47 821 1876 788 1843 1.8e-11 1.3e-07 5.501846e+03 1 22 1.47
80bau3b 2262 12061 2140 11066 1.1e-11 7.6e-07 9.872244e+05 0 37 4.47
NL 7039 15325 6665 14680 1.8e-12 9.9e-07 1.229265e+06 1 35 29.27
adlittle 56 138 55 137 8.2e-14 3.4e-11 2.254950e+05 0 12 0.02
afiro 27 51 27 51 1.9e-11 7.2e-15 -4.647531e+02 0 8 0.01
agg 488 615 390 477 3.0e-09 6.2e-11 -3.599177e+07 1 17 0.36
agg2 516 758 514 750 3.4e-11 4.8e-10 -2.023925e+07 1 20 0.75
agg3 516 758 514 750 4.5e-11 3.1e-11 1.031212e+07 1 19 0.72
bandm 305 472 240 395 1.3e-12 1.5e-08 -1.586280e+02 1 14 0.15
beaconfd 173 295 86 171 3.7e-12 2.4e-13 3.359249e+04 1 10 0.06
blend 74 114 71 111 4.6e-13 5.7e-15 -3.081215e+01 0 10 0.02
bnl1 643 1586 610 1491 1.2e-11 3.2e-08 1.977630e+03 0 39 0.96
bnl2 2324 4486 1964 4008 3.1e-09 8.2e-08 1.811237e+03 1 31 5.94
boeing1 351 726 331 697 5.0e-09 2.6e-09 -3.352136e+02 1 18 0.32
boeing2 166 305 126 265 2.1e-08 1.1e-09 -3.150187e+02 0 14 0.07
bore3d 233 334 81 138 4.2e-14 4.8e-13 1.373080e+03 0 16 0.04
brandy 220 303 133 238 1.0e-05 6.1e-15 1.518510e+03 1 16 0.15
capri 271 482 241 436 1.8e-10 2.4e-12 2.690013e+03 0 19 0.17
cycle 1903 3371 1420 2773 7.6e-09 2.3e-12 -5.226393e+00 1 21 2.32
czprob 929 3562 671 2779 3.7e-10 1.1e-07 2.185197e+06 0 26 0.57
d2q06c 2171 5831 2132 5728 4.8e-08 2.8e-07 1.227842e+05 1 24 9.08
d6cube 415 6184 403 5443 2.4e-09 4.5e-09 3.154917e+02 1 16 3.10
degen2 444 757 444 757 7.4e-14 8.4e-13 -1.435178e+03 1 11 0.51
degen3 1503 2604 1503 2604 3.6e-10 1.8e-09 -9.872940e+02 2 14 8.37
dfl001 6071 12230 5984 12143 1.5e-10 2.4e-07 1.126640e+07 4 39 707.42
e226 223 472 198 429 9.6e-12 1.8e-08 -2.586493e+01 1 16 0.18
etamacro 400 816 334 669 1.4e-14 3.1e-08 -7.557152e+02 0 25 0.42
fffff800 524 1028 322 826 5.8e-10 7.4e-08 5.556796e+05 1 25 0.68
finnis 497 1064 438 935 4.2e-12 1.1e-08 1.727911e+05 0 25 0.39
fit1d 24 1049 24 1049 9.0e-14 1.7e-07 -9.146377e+03 1 17 0.60
fit1p 627 1677 627 1677 3.3e-09 4.6e-08 9.146378e+03 0 17 0.58
fit2d 25 10524 25 10524 4.7e-14 2.4e-08 -6.846429e+04 1 23 7.58
fit2p 3000 13525 3000 13525 4.4e-08 1.8e-06 6.846441e+04 0 19 4.21
forplan 161 492 121 447 4.1e-08 3.9e-10 -6.642190e+02 1 20 0.35
ganges 1309 1706 1113 1510 4.4e-07 9.7e-09 -1.095857e+05 0 17 0.73
gfrd-pnc 616 1160 590 1134 9.7e-15 2.2e-11 6.902236e+06 0 18 0.20
greenbea * 2392 5598 1933 4164 1.6e-03 4.8e-07 -7.255534e+07 1 43 5.96
greenbeb * 2392 5598 1932 4154 1.4e-05 1.7e-10 -4.302260e+06 1 37 4.65
grow15 300 645 300 645 3.5e-07 8.4e-15 -1.068709e+08 1 21 0.55
grow22 440 946 440 946 4.1e-05 2.1e-10 -1.608343e+08 1 22 0.89
grow7 140 301 140 301 2.9e-09 1.6e-09 -4.778781e+07 1 17 0.21
israel 174 316 174 316 1.4e-12 1.3e-08 -8.966448e+05 1 19 0.52
kb2 43 68 43 68 3.0e-10 2.0e-16 -1.749900e+03 0 13 0.02
lotfi 153 366 133 346 7.4e-10 1.0e-15 -2.526471e+01 0 15 0.06

20

Before After Max CPU
Preprocessing Preprocessing Relative Relative Primal Add. Time

Name Rows Cols Rows Cols Infeas Compl Objective Corr. Iters [secs]
maros-r7 3136 9408 2152 7440 2.3e-11 1.5e-11 1.497185e+06 2 14 30.10
maros 846 1966 655 1437 2.8e-08 7.1e-11 -5.806374e+04 0 20 0.57
mod2 * 34774 66409 28760 56347 1.1e-05 9.1e-05 4.557503e+07 1 57 170.45
modszk1 687 1620 665 1599 7.4e-09 1.6e-12 3.206196e+02 0 22 0.49
nesm 662 3105 654 2922 1.4e-09 2.2e-07 1.407604e+07 1 25 1.58
pds-10 16558 49932 15648 48780 2.6e-10 3.5e-06 2.672717e+10 3 35 557.58
perold 625 1506 593 1374 6.9e-07 4.4e-08 -9.380755e+03 1 31 1.28
pilot.ja 940 2267 810 1804 4.1e-05 3.0e-08 -6.113136e+03 1 29 3.35
pilot 1441 4860 1368 4543 3.4e-07 2.5e-07 -5.574897e+02 2 31 23.20
pilot.we 722 2928 701 2814 1.5e-11 1.2e-07 -2.720107e+06 0 46 1.58
pilot4 410 1123 396 1022 4.1e-05 5.1e-09 -2.581139e+03 1 46 1.91
pilot87 2030 6680 1971 6373 5.2e-07 6.6e-07 3.017105e+02 3 30 75.92
pilotnov 975 2446 848 2117 4.0e-06 1.3e-11 -4.497276e+03 1 16 1.67
radex 16 26 15 25 3.7e-13 6.2e-14 3.584229e+05 0 8 0.00
recipe 91 204 64 123 1.9e-10 3.9e-16 -2.666160e+02 0 9 0.02
sc105 105 163 104 162 8.7e-09 1.5e-16 -5.220206e+01 0 10 0.02
sc205 205 317 203 315 1.1e-11 1.1e-13 -5.220206e+01 0 11 0.07
sc50a 50 78 49 77 2.4e-11 9.5e-16 -6.457508e+01 0 8 0.01
sc50b 50 78 48 76 2.8e-09 7.4e-11 -7.000000e+01 0 6 0.01
scagr25 471 671 469 669 2.9e-12 2.2e-13 -1.475343e+07 0 18 0.18
scagr7 129 185 127 183 1.8e-13 7.9e-09 -2.331390e+06 0 14 0.04
scfxm1 330 600 305 568 1.2e-06 1.6e-09 1.841676e+04 0 17 0.19
scfxm2 660 1200 610 1136 2.2e-08 5.3e-13 3.666026e+04 0 20 0.43
scfxm3 990 1800 915 1704 5.1e-08 3.6e-12 5.490125e+04 0 20 0.64
scorpion 388 466 340 412 5.0e-14 6.2e-16 1.878125e+03 0 12 0.09
scrs8 490 1275 421 1199 6.9e-13 1.1e-08 9.042970e+02 0 22 0.27
scsd1 77 760 77 760 7.3e-15 2.1e-15 8.666667e+00 0 9 0.07
scsd6 147 1350 147 1350 1.1e-14 2.8e-09 5.050000e+01 0 12 0.15
scsd8 397 2750 397 2750 6.4e-15 9.2e-08 9.050001e+02 0 11 0.27
sctap1 300 660 284 644 1.0e-13 9.7e-14 1.412250e+03 0 16 0.12
sctap2 1090 2500 1033 2443 2.3e-15 4.0e-15 1.724807e+03 0 14 0.44
sctap3 1480 3340 1408 3268 7.0e-16 1.3e-13 1.424000e+03 0 15 0.67
seba 515 1036 448 901 2.4e-13 6.8e-09 1.571160e+04 2 12 2.60
share1b 117 253 112 248 2.6e-08 3.4e-10 -7.658932e+04 0 19 0.08
share2b 96 162 96 162 2.1e-11 1.6e-14 -4.157322e+02 0 17 0.05
shell 536 1777 487 1451 3.5e-13 1.6e-11 1.208825e+09 0 21 0.28
ship04l 402 2166 292 1905 5.8e-14 2.8e-13 1.793325e+06 0 13 0.20
ship04s 402 1506 216 1281 1.0e-11 7.0e-09 1.798715e+06 0 13 0.13
ship08l 778 4363 470 3121 5.7e-14 8.9e-11 1.909055e+06 0 16 0.39
ship08s 778 2467 276 1604 3.1e-13 3.0e-11 1.920098e+06 0 12 0.16
ship12l 1151 5533 610 4171 4.3e-14 2.0e-07 1.470188e+06 0 16 0.51
ship12s 1151 2869 340 1943 5.0e-14 3.6e-13 1.489236e+06 0 13 0.21
sierra 1227 2735 1212 2705 4.8e-16 8.0e-10 1.539436e+07 0 21 0.79
stair 356 614 356 532 1.3e-09 2.6e-08 -2.512670e+02 1 13 0.41
standata 359 1274 314 796 6.7e-15 5.4e-09 1.257700e+03 0 13 0.10
standgub 361 1383 314 796 6.7e-15 5.4e-09 1.257700e+03 0 13 0.10
standmps 467 1274 422 1192 2.9e-14 3.2e-15 1.406017e+03 0 26 0.31
stocfor1 117 165 102 150 4.5e-13 3.6e-11 -4.113198e+04 0 12 0.03
stocfor2 2157 3045 1980 2868 8.4e-11 1.0e-07 -3.902441e+04 0 20 0.95
stocfor3 16675 23541 15362 22228 1.8e-09 6.1e-08 -3.997678e+04 0 31 12.80
truss 1000 8806 1000 8806 1.5e-13 1.8e-09 4.588158e+05 0 20 2.24
tuff 333 628 257 567 5.5e-09 5.5e-08 2.921478e-01 1 18 0.32
vtp.base 198 346 72 111 1.5e-08 2.6e-09 1.298315e+05 0 11 0.02
wood1p * 244 2595 171 1718 1.8e-05 3.8e-05 1.442944e+00 2 21 3.35
woodw 1098 8418 708 5364 6.2e-11 1.2e-10 1.304476e+00 0 31 2.24
world * 34506 67147 28652 58027 2.2e-02 3.2e-04 7.214980e+07 1 61 181.65

21

Table 2: netlib: Infeasible netlib problems

Before After Max CPU
Preprocessing Preprocessing Relative Relative Primal Add. Time

Name Rows Cols Rows Cols Infeas Compl Objective Corr. Iters [secs]
bgdbg1 348 629 249 509 1.8e+02 4.0e+00 4.155802e+01 0 6 0.05
bgetam 400 816 334 669 8.4e+01 1.2e+01 -3.571285e+04 0 7 0.14
bgindy 2671 10880 2657 10866 4.6e+01 2.6e+00 1.059302e+09 1 8 13.29
bgprtr 20 40 20 40 1.9e-01 3.3e-01 8.008869e+06 0 6 0.00
box1 231 261 231 261 5.9e-02 1.0e+00 5.775809e+02 0 4 0.02
ceria3d 3576 4400 3576 4400 8.0e-02 7.4e-02 -9.975419e-01 1 12 4.77
chemcom 288 744 288 744 4.9e+02 1.9e+00 3.908033e+05 0 8 0.09
cplex1 3005 5224 3005 5224 5.0e+07 9.2e+00 -2.701093e+09 0 5 0.44
cplex2 * 224 378 224 378 3.1e-06 8.4e-06 6.550750e-01 0 35 0.22
ex72a 197 215 197 215 4.2e-01 1.0e+00 4.579770e+02 0 4 0.02
ex73a 193 211 193 211 4.1e-01 1.0e+00 4.449144e+02 0 4 0.02
forest6 66 131 66 131 9.2e+01 6.5e-01 4.139797e+05 0 11 0.02
galenet 8 14 5 9 4.7e+01 9.4e-01 0.000000e+00 0 5 0.00
gosh 3792 13455 3479 12502 1.7e+01 1.1e+01 4.141377e+02 1 13 11.22
gran † 2658 2525
greenbea-i 2393 5596 1933 4153 1.1e+04 6.6e+00 2.199821e+03 1 9 1.50
itest2 9 13 9 13 2.0e+01 4.6e-01 0.000000e+00 0 5 0.00
itest6 11 17 10 15 5.0e+05 1.1e+00 8.730497e+05 0 5 0.00
klein1 54 108 54 108 3.2e+03 1.5e+01 0.000000e+00 1 23 0.08
klein2 477 531 477 531 3.0e+04 3.7e+02 0.000000e+00 2 22 5.18
klein3 994 1082 994 1082 9.5e+04 1.4e+03 0.000000e+00 3 27 47.56
mondou2 312 604 259 467 8.0e+00 4.0e+00 6.313890e+08 0 8 0.05
pang 361 741 333 685 1.1e-02 3.6e+00 2.108127e+04 0 28 0.34
pilot4i 410 1123 396 1022 1.5e+04 5.7e-01 -1.377993e+03 1 33 1.37
qual 323 464 305 441 1.5e+00 3.4e-02 -5.882060e+04 1 27 0.32
reactor 318 808 269 602 9.9e+00 6.4e-01 -3.285658e+05 0 9 0.11
refinery 323 464 303 439 3.5e+01 6.4e-01 -5.227856e+04 0 20 0.21
vol1 323 464 305 441 2.3e+00 1.3e-01 -6.111366e+04 1 26 0.32
woodinfe † 35 89

Table 3: NEMS problems

Before After Max CPU
Preprocessing Preprocessing Relative Relative Primal Add. Time

Name Rows Cols Rows Cols Infeas Compl Objective Corr. Iters [secs]
NEMSafm 334 2348 322 1402 1.2e-14 1.7e-11 -6.792374e+03 0 17 0.18
NEMScem 651 1712 479 1540 3.3e-10 1.9e-08 8.977233e+04 0 19 0.30
NEMSemm1 3945 75352 3230 41048 5.1e-15 3.6e-06 5.129614e+05 1 64 166.40
NEMSemm2 6943 48878 4526 26754 1.6e-10 2.2e-06 5.810806e+05 0 37 10.77
NEMSpmm1 2372 8903 2227 7145 2.4e-08 4.8e-08 3.274158e+05 1 38 11.45
NEMSpmm2 2301 8734 2081 7944 3.5e-08 1.9e-07 2.917948e+05 1 40 12.92
NEMSwrld 7138 28550 5621 23706 3.3e-13 1.6e-06 -2.603093e+02 2 42 182.22

References

[1] E. D. Andersen and K. D. Andersen, Presolving in linear programming, Mathematical
Programming, 71 (1995), pp. 221–245.

[2] A. R. Curtis and J. K. Reid, On the automatic scaling of matrices for Gaussian elimi-

nation, J. Inst. Maths Applics, 10 (1972), pp. 118–124.

[3] J. R. Gilbert, E. Ng, and B. W. Peyton, An efficient algorithm to compute row and

column counts for sparse cholesky factorization, SIAM Journal on Matrix Analysis and Ap-
plications, 15 (1994), pp. 1075–1091.

22

[4] J. Gondzio, Multiple centrality corrections in a primal-dual method for linear programming,
Computational Optimization and Applications, 6 (1996), pp. 137–156.

[5] A. Gupta, M. Joshi, and V. Kumar, WSSMP: Watson Symmetric Sparse Matrix Pack-

age, IBM Research Report RC 20923 (92699), IBM, July 1997.

[6] J. W.-H. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM
Transactions on Mathematical Software, 11 (1985), pp. 141–153.

[7] , The role of elimination trees in sparse factorization, SIAM Journal on Matrix Analysis
and Applications, 11 (1990), pp. 134–172.

[8] S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM Journal
on Optimization, 2 (1992), pp. 575–601.

[9] E. Ng and B. W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessor

computers, SIAM Journal on Scientific Computing, 14 (1993), pp. 1034–1056.

[10] S. J. Wright, The Cholesky factorization in interior-point and barrier methods, Preprint
MCS–P600–0596, Mathematics and Computer Science Division, Argonne National Labora-
tory, Argonne, Ill., May 1996.

[11] , Primal-Dual Interior-Point Methods, SIAM Publications, Philadelphia, Pa, 1997.

[12] Y. Zhang, User’s Guide to LIPSOL, Department of Mathematics and Statistics, University
of Maryland Baltimore County, Baltimore, Maryland, July 1995.

[13] , Solving large-scale linear programs by interior-point methods under the MATLAB en-

viroment, Technical Report TR96-01, Department of Mathematics and Statistics, University
of Maryland Baltimore County, Baltimore, Md, 1996.

[14] Annual Energy Outlook 1996, Energy Information Administration, U. S. Department of En-
ergy, Washington, DC 20585, 1996. Document DOE/EIA-0383(96).

23

