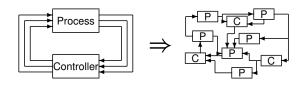
Structure Preserving H_{∞} -optimal Control

Anders Rantzer

Carolina Lidström, Richard Pates

LCCC Linnaeus Center Lund University Sweden

Towards a Scalable Control Theory



Today: Exploit (network) structure for scalability

Background

H_{∞} Control:

Riccati solution: Doyle, Glover, Khargonekar and F (1989)

LMI solution: Packard (1994) and Apakarian/Gahinet (1995)

Optimization of structured controllers:

Spatially invariant systems: Bamieh, Paganini, Dahleh (2002) Distributed controllers: D'Andrea and Dullerud (2003) Quadratic invariance: Rotkowitz and Lall (2002) Low rank coordination: Madjidian and Mirkin (2014)

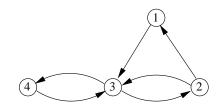
Dsitributed control of positive systems:

Synthesis by linear programming: Rami and Tadeo (2007) H_{∞} control via LMIs: Tanaka and Langbort (2011)

Robust control: Briat (2013)

Scalability and positively dominated systems: Rantzer (2015)

Example: Network Flow Dynamics



$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \\ \dot{\mathbf{x}}_3 \\ \dot{\mathbf{x}}_4 \end{bmatrix} = \begin{bmatrix} -1 - \ell_{31} & \ell_{12} & 0 & 0 \\ 0 & -\ell_{12} - \ell_{32} & \ell_{23} & 0 \\ \ell_{31} & \ell_{32} & -\ell_{23} - \ell_{43} & \ell_{34} \\ 0 & 0 & \ell_{43} & -4 - \ell_{34} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix}$$

How do we select ℓ_{ij} to optimize the dynamics?

Network Flow Dynamics in Practice

- ► Irrigation systems
- Power systems
- Traffic flow dynamics
- ► Communication/computation networks
- ► Production planning and logistics

Outline

- $ightharpoonup H_{\infty}$ Optimal Structured Static Controllers
- $ightharpoonup H_{\infty}$ Optimal Structured PI Controllers
- Graph Structure and Positivity

H_{∞} Optimal Static Control on Networks

Problem:

Given a graph $(\mathcal{V}, \mathcal{E})$ and

$$\dot{x}_i = a_i x_i + \sum_{(i,j) \in \mathcal{E}} (u_{ij} - u_{ji}) + w_i \qquad i \in \mathcal{V}$$

find control law u=Kx that minimizes the H_{∞} norm of the map from w to (x,u).

Solution:

An optimal control law when $a_i < 0$ is given by

$$u_{ij} = x_i/a_i - x_j/a_j$$
 $(i, j) \in \mathcal{E}.$

[Lidström/Rantzer, ACC2016]

Structure Preserving Static Feedback

Problem

Consider the system $\dot{x}=Ax+Bu+w$ with A symmetric and Hurwitz. Find a state feedback controller u=Kx that minimizes the H_{∞} norm of the map from w to (x,u) in the closed loop system $\dot{x}=(A+BK)x+w$.

Theorem

A solution is given by $u = K_*x$ where $K_* = B^TA^{-1}$. The minimal value of the norm is $\sqrt{\|(A^2 + BB^T)^{-1}\|}$.

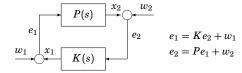
Remarks

No Riccati equation needs to be solved. If A is diagonal and B is sparse, than also K_{\ast} is sparse.

Outline

- $ightharpoonup H_{\infty}$ Optimal Structured Static Controllers
- H_{∞} Optimal Structured PI Controllers
- Graph Structure and Positivity

Frequency Weighted Specifications



Disturbance rejection:

The transfer functions $(I+PK)^{-1}$ and $(I+PK)^{-1}P$ should be small for low frequencies. ("Integral action")

Measurement errors:

The transfer functions $K(I+PK)^{-1}$ and $PK(I+PK)^{-1}$ should be small for high frequencies.

Structure Preserving Dynamic Feedback

Theorem

Let $P(s)=(sI-A)^{-1}B$, where $A\in\mathbb{R}^{n\times n}$ is symmetric negative definite. Define $F_K(s)=[I+K(s)P(s)]^{-1}K(s)$ and suppose that $\tau\geq\sqrt{\|B^TA^{-4}B\|}$.

Then the problem to minimize $\|F_K\|_\infty$ over stabilizing K(s) subject to $\|\frac{1}{s}P(I+KP)^{-1}\|_\infty \le \tau$ is solved by

$$\hat{K}(s) = k \left(B^T A^{-2} - \frac{1}{s} B^T A^{-1} \right).$$

where $k = \tau^{-1} || (A^{-1}B)^{\dagger} ||$.

The minimal value of $\|F_K\|_{\infty}$ is $\|(A^{-1}B)^{\dagger}\|$.

Proof Sketch

Recall the definition $F_K = (I + KP)^{-1} K$.

The constraint $\|\frac{1}{s}P(I+KP)^{-1}\|_{\infty} \leq \tau$ implies that $F_K(0)$ must satisfy $P(0)F_K(0)P(0) = P(0)$.

Minimizing $\|F\|$ subject to P(0)FP(0)=P(0) gives the minimal value $\|(A^{-1}B)^{\dagger}\|$ attained by $F=-(A^{-1}B)^{\dagger}$. The given controller attains this value and

$$\begin{split} \left\| \frac{1}{i\omega} P(I + \widehat{K}P)^{-1} \right\| &= \left\| (i\omega I - A)^{-1} B \left(i\omega I + k B^T A^{-2} B \right)^{-1} \right\| \\ \left\| F_{\widehat{K}}(i\omega) \right\| &= \left\| k \left(i\omega + k B^T A^{-2} B \right)^{-1} B^T A^{-2} (i\omega I - A) \right\| \end{split}$$

are both maximal a $\omega = 0$, so the optimal value is attained.

Optimal Network Control with Edge Integrators

Given a graph $(\mathcal{V},\mathcal{E}),$ let P(s) be the transfer matrix from u to x given by

$$\dot{x}_i = a_i x_i + \sum_{(i,j) \in \mathcal{F}} (u_{ij} - u_{ji}) \qquad i \in \mathcal{V}$$

with $a_i < 0$. Then $\widehat{K}(s)$ is the dynamic map from x to u given by

$$\begin{cases} \dot{z}_{ij} = k(x_i/a_i - x_j/a_j) \\ u_{ij} = z_{ij} - x_i/a_i^2 + x_j/a_j^2 \end{cases}$$

A separate PI controller for each edge of the graph. Works if the graph is a tree! ... What goes wrong otherwise?

Optimal Network Control with Node Integrators

Given a graph $(\mathcal{V}, \mathcal{E})$, let the plant be given by

$$\dot{x}_i = a_i x_i + b_i u_i + \sum_{(i,j) \in \mathcal{E}} (u_{ij} - u_{ji}) \qquad i \in \mathcal{V}$$

with $a_i < 0$. Then $\widehat{K}(s)$ is the map from x to u given by

$$\begin{cases} \dot{z}_i = x_i \\ u_{ij} = z_i/a_i - x_i/a_i^2 - z_j/a_j + x_j/a_j^2 \\ u_i = b_i(z_i/a_i - x_i/a_i^2) \end{cases}$$

There is a problem if all b_i are zero. Why?

Outline

- $ightharpoonup H_{\infty}$ Optimal Structured Static Controllers
- $ightharpoonup H_{\infty}$ Optimal Structured PI Controllers
- Graph Structure and Positivity

Limitations due to Graph Structure

Let A = -I while B is an oriented incidence matrix, e.g.

$$B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}.$$

If the graph is a tree, $\boldsymbol{\mathit{B}}$ has full column rank and

$$\|F_{\widehat{K}}\|_{\infty} = \frac{1}{\sqrt{\|(B^TB)^{-1}\|}} = \frac{1}{\sqrt{\lambda_2}},$$

where λ_2 is the algebraic connectivity of the graph. In two extreme cases, a star graph and a path, λ_2 is

1 and
$$\left(2\sin\left(\frac{\pi}{n}\right)\right)^2$$

respectively.

Closed Loop Positive Systems

Consider the system

$$\dot{x}(t) = Ax(t) + Bu(t) + w(t)$$
 $x(0) = 0$

with A diagonal and negative definite, while $-BB^T$ is Metzler.

The proportional controller $u(t) = B^T A^{-1} x(t)$ makes the map from w to x positive.

The PI controller

$$\begin{cases} \dot{z}(t) = x(t) & z(0) = 0 \\ u(t) = -k \left[B^T A^{-2} x(t) + B^T A^{-1} z(t) \right] \end{cases}$$

makes the map from w to z positive.

For Networked Control — Use H_{∞} Optimization!

- Structure preserving optimal PI controllers
 No need for global information
- ► More research needed
 - Output feedback
 - More general dynamicsNonlinear extensions
- Many driving applications

