Adaptive Routing with Guaranteed Delay Bounds using Safe Reinforcement Learning

> <u>Gautham Nayak Seetanadi</u> Martina Maggio, Karl-Erik Årzen

Dept. of Automatic Control, Lund University

- Route packets through a real-time network
- Give guarantees on total transmission delay
- ▶ Use reinforcement learning(**RL**) to explore the state-space

- Route packets through a real-ine network
- Give guarantees on total transmission delay
- ▶ Use reinforcement learning(**RL**) to explore the state-space

DAG with worst case link delay

DAG with worst case link delay

- Route packets through a reserve network
- Give guarantees on total transmission delay
- ► Use reinforcement learning(**RL**) to explore the state-space

DAG with worst case link delay

- Route packets through a reserve network
- Give guarantees on total transmission delay
- ▶ Use reinforcement learning(**RL**) to explore the state-space

Eliminate need for complex routing tables

DAG with worst case link delay

Eliminate need for complex routing tables

- Route packets through a real-time network
- Give guarantees on total transmission delay
- Use reinforcement learning (**RL**) to explore the state-space

https://github.com/AdaptiveRouting-using-RL/AdaptiveRoutingUsingRL

• Typical transmission time over link varies over time

- Typical transmission time over link varies over time
- Classical RL based solutions

- Typical transmission time over link varies over time
- Classical RL based solutions
 - Reduce total transmission times
 - Do not provide guarantees

- Typical transmission time over link varies over time
- Classical RL based solutions
 - Reduce total transmission times
 - Do not provide guarantees
- ▶ Real-time solution ^[1]

- Typical transmission time over link varies over time
- Classical RL based solutions
 - Reduce total transmission times
 - Do not provide guarantees
- ▶ Real-time solution^[1]
 - Provide Guarantees
 - Depends on complex routing tables
 - Does not react to disturbances

x

z

 ${\mathcal X}$

Destination

The Beginning

Si D F T	ubject: Your talk today Jate: Wed, 12 Dec 2018 17:14:25 +0100 From: Karlerik <u>karl-erik.arzen@control.lth.se</u> Fo: <u>baruah@wustl.edu</u>	
	Sanjoy Very interesting talk. I am currently trying to learn Reinforcement learning (RL). When I heard your talk I felt many similarities between what you are doing and policy learning and q-learning in RL. There might be an interesting connection.	
	Best Karl-Erik	

[1] S. Baruah, "Rapid routing with guaranteed delay bounds," in 2018 IEEE Real-Time Systems Symposium (RTSS), December 2018

[1] S. Baruah, "Rapid routing with guaranteed delay bounds," in 2018 IEEE Real-Time Systems Symposium (RTSS), December 2018

[1] S. Baruah, "Rapid routing with guaranteed delay bounds," in 2018 IEEE Real-Time Systems Symposium (RTSS), December 2018

[1] S. Baruah, "Rapid routing with guaranteed delay bounds," in 2018 IEEE Real-Time Systems Symposium (RTSS), December 2018

[1] S. Baruah, "Rapid routing with guaranteed delay bounds," in 2018 IEEE Real-Time Systems Symposium (RTSS), December 2018

Previous work^[1]

[1] S. Baruah, "Rapid routing with guaranteed delay bounds," in 2018 IEEE Real-Time Systems Symposium (RTSS), December 2018

Previous work^[1]

Reinforcement Learning

Branch of machine learning that is unsupervised

Reinforcement Learning

- Branch of machine learning that is unsupervised
- Agent teaches itself how to behave by trial and error in episodic manner

Reinforcement Learning

- Branch of machine learning that is unsupervised
- Agent teaches itself how to behave by trial and error in episodic manner
- Learns to maximise a reward returned by the environment

Lunch	Mario	Routing

	Lunch	Mario	Routing
Agent	You	Mario/Luigi	Node

	Lunch	Mario	Routing
Agent	You	Mario/Luigi	Node
Action Set (A)	 Inspira Finn Inn Govindas 	Movement	Possible edges

	Lunch	Mario	Routing
Agent	You	Mario/Luigi	Node
Action Set (A)	 Inspira Finn Inn Govindas 	Movement	Possible edges
Environment	Lund	Super Mario world	Network

	Lunch	Mario	Routing
Agent	You	Mario/Luigi	Node
Action Set (A)	 Inspira Finn Inn Govindas 	Movement	Possible edges
Environment	Lund	Super Mario world	Network
State (S)	Hungry?Teaching?Salary?	Place in the worldGoombas?Peach?	Current nodeTime left

	Lunch	Mario	Routing
Agent	You	Mario/Luigi	Node
Action Set (A)	 Inspira Finn Inn Govindas 	Movement	Possible edges
Environment	Lund	Super Mario world	Network
State (S)	Hungry?Teaching?Salary?	Place in the worldGoombas?Peach?	Current nodeTime left
Reward (R) (Immediate or Delayed)	Food Satisfaction	Points	Total amount of time saved

	Lunch	Mario	Routing
Agent	You	Mario/Luigi	Node
Action Set (A)	 Inspira Finn Inn Govindas 	Movement	Possible edges
Environment	Lund	Super Mario world	Network
State (S)	Hungry?Teaching?Salary?	Place in the worldGoombas?Peach?	Current nodeTime left
Reward (R) (Immediate or Delayed)	Food Satisfaction	Points	Total amount of time saved
	Greedy, ϵ - greedy		
POIICY (π) (Exploitation vs Exploration)	Stick to InspiraTry the new restaurant	Jump on the goombaGo down the pipe	 Choose the path with lowest delay Explore an edge

	Lunch	Mario	Routing
Agent	You	Mario/Luigi	Node
Action Set (A)	 Inspira Finn Inn Govindas 	Movement	Possible edges
Environment	Lund	Super Mario world	Network
State (S)	Hungry?Teaching?Salary?	Place in the worldGoombas?Peach?	Current nodeTime left
Reward (R) (Immediate or Delayed)	Food Satisfaction	Points	Total amount of time saved
	Greedy, ϵ - greedy		
POIICY (π) (Exploitation vs Exploration)	Stick to InspiraTry the new restaurant	Jump on the goombaGo down the pipe	 Choose the path with lowest delay Explore an edge
Value (V)	Expected reward of being in the current state.		

	Lunch	Mario	Routing
Agent	You	Mario/Luigi	Node
Action Set (A)	 Inspira Finn Inn Govindas 	Movement	Possible edges
Environment	Lund	Super Mario world	Network
State (S)	Hungry?Teaching?Salary?	Place in the worldGoombas?Peach?	Current nodeTime left
Reward (R) (Immediate or Delayed)	Food Satisfaction	Points	Total amount of time saved
	Greedy, ϵ - greedy		
POIICY (π) (Exploitation vs Exploration)	Stick to InspiraTry the new restaurant	Jump on the goombaGo down the pipe	 Choose the path with lowest delay Explore an edge
Value (V)	Expected reward of being in the current state.		
Q-Value (Q)	Similar to V but maps state-action pairs to rewards.		

The routing problem can be formalised as a Markov Decision Process (MDP) consisting of:

- The routing problem can be formalised as a Markov Decision Process (MDP) consisting of:
 - Finite set of states (S)

- The routing problem can be formalised as a Markov Decision Process (MDP) consisting of:
 - Finite set of states (S)
 - Finite set of actions from each state (A)

- The routing problem can be formalised as a Markov Decision Process (MDP) consisting of:
 - Finite set of states (**S**)
 - Finite set of actions from each state (A)
 - Probability of transition from one state to another (**P**)

- The routing problem can be formalised as a Markov Decision Process (MDP) consisting of:
 - Finite set of states (**S**)
 - Finite set of actions from each state (A)
 - Probability of transition from one state to another (**P**)
 - Rewards from each state (**R**)

- The routing problem can be formalised as a Markov Decision Process (MDP) consisting of:
 - Finite set of states (**S**)
 - Finite set of actions from each state (A)
 - Probability of transition from one state to another (**P**)
 - Rewards from each state (**R**)
- In our state space, we encode the current vertex and total time elapsed from the beginning

State-Space Example

- Consider a scenario with :-
 - Source node **i**, destination node **t**
 - Maximum admissible time, $D_F = 25$

 t_{25} (i_{25}) y_{25} (z_{25}) (x_{25}) x_{24} (i_{24}) y_{24} z_{24} t_{24} (i_{23}) t_{23} (x_{23}) y_{23} (z_{23}) t_{22} (i_{22}) (x_{22}) y_{22} (z_{22}) (i_{21}) (x_{21}) (z_{21}) t_{21} y_{21} x_{20} t_{20} (i_{20}) y_{20} (z_{20}) (t_{19}) (x_{19}) (i_{19}) (z_{19}) y_{19} (i_{18}) x_{18} t_{18} z_{18} y_{18} x17 $\overline{z_{17}}$ (t_{17}) (i_{17}) y_{17} t_{16} (i_{16}) x_{16} $\overline{z_{16}}$ y_{16} (i_{15}) x_{15} (t_{15}) $\overline{z_{15}}$ y_{15} (i_{14}) x_{14} t_{14} (z_{14}) y_{14} x_{13} (i_{13}) $\overline{z_{13}}$ t_{13} y_{13} (i_{12}) x_{12} y_{12} $\overline{z_{12}}$ (t_{12}) (i_{11}) x_{11} (t_{11}) (z_{11}) y_{11} (i_{10}) (t_{10}) x_{10} y_{10} (z_{10}) (i_9) t_9 (x_9) (z_9) $\begin{pmatrix} y_9 \end{pmatrix}$ (i_8) (t_8) (x_8) y_8 (z_8) (i_7) (t_7) (x_7) (z_7) (y_7) (i_6) (z_6) (t_6) (x_6) (y_6) (i_5) (t_5) (x_5) y_5 (z_5) (t_4) (i_4) (z_4) (x_4) (y_4) t_3 (i_3) (x_3) (y_3) (z_3) t_2 (i_2) (x_2) (z_2) y_2 $egin{pmatrix} t_1 \ t_0 \ \end{pmatrix}$ (i_1) (x_1) (z_1) (y_1) (i_0) (x_0) (y_0) (z_0)

 $D_{F} = 25$

Unreachable states

 $D_{F} = 25$

 z_{25} t_{25} i_{25} x_{25} y_{25} i_{24} x_{24} y_{24} z_{24} t_{24} z_{23} t_{23} i_{23} x_{23} y_{23} i_{22} t_{22} x_{22} y_{22} z_{22} x_{21} t_{21} i_{21} z_{21} y_{21} x_{20} i_{20} y_{20} z_{20} t_{20} i_{19} (t_{19}) z_{19} x_{19} y_{19} x_{18} t_{18} i_{18} y_{18} z_{18} x_{17} i_{17} y_{17} z_{17} (t_{17}) t_{16} i_{16} x_{16} z_{16} y_{16} x_{15} t_{15} i_{15} y_{15} z_{15} *i*₁₄ x_{14} t_{14} z_{14} y_{14} x_{13} y_{13} z_{13} t_{13} i_{13} i_{12} x_{12} $\overline{z_{12}}$ (t_{12}) y_{12} *i*₁₁ (t_{11}) x_{11} z_{11} y_{11} (t_{10}) i_{10} x_{10} (z_{10}) y_{10} i_9 t_9 (x_9) (z_9) $\begin{pmatrix} y_9 \end{pmatrix}$ i_8 (t_8) (x_8) y_8 (z_8) (t_7) (i_7) (x_7) (z_7) (y_7) (z_6) (t_6) i_6 (y_6) (x_6) (t_5) (i_5) (x_5) (y_5) (z_5) (t_4) (z_4) (i_4) (x_4) (y_4) t_3 i_3 (x_3) (y_3) (z_3) (t_2) (i_2) (z_2) (x_2) y_2 (i_1) z_1 (t_1) (x_1) y_1 t_0 (i_0) x_0 z_0 y_0

 Versatile algorithm to find shortest path from starting to target node in a weighted graph

- Versatile algorithm to find shortest path from starting to target node in a weighted graph
- Forms the basis of pre-processing stage

- Versatile algorithm to find shortest path from starting to target node in a weighted graph
- Forms the basis of pre-processing stage
- Gives the tightest deadline D_F that can be guaranteed over each link

Pre-processing phase

Required irrespective of the algorithm used to provide guarantees

Pre-processing phase

- Required irrespective of the algorithm used to provide guarantees
- Uses Dijkstra's algorithm to find smallest delay that can be guaranteed to the destination

Pre-processing phase

- Required irrespective of the algorithm used to provide guarantees
- Uses Dijkstra's algorithm to find smallest delay that can be guaranteed to the destination
- Calculated for each link in the network

Chooses optimal path in dynamic environmental conditions

- Chooses optimal path in dynamic environmental conditions
- While ensuring never to violate deadline restrictions

Thanks to the truncated state-space

- Chooses optimal path in dynamic environmental conditions
- While ensuring never to violate deadline restrictions
- Algorithm has two phases

- Chooses optimal path in dynamic environmental conditions
- While ensuring never to violate deadline restrictions
- Algorithm has two phases
 - Pre-processing phase (Dijkstras algorithm)

- Chooses optimal path in dynamic environmental conditions
- While ensuring never to violate deadline restrictions
- Algorithm has two phases
 - Pre-processing phase (Dijkstras algorithm)
 - Run-time phase
- Chooses optimal path in dynamic environmental conditions
- While ensuring never to violate deadline restrictions
- Algorithm has two phases
 - Pre-processing phase (Dijkstras algorithm)
 - Run-time phase

• The environment returns the reward after each episode

 Value iteration updates a value of being in a state, improving future episodes

- Value iteration updates a value of being in a state, improving future episodes
- Popular Methods
 - Monte Carlo value estimation
 - Temporal Difference(TD) Learning

- Value iteration updates a value of being in a state, improving future episodes
- Popular Methods
 - Monte Carlo value estimation
 - Temporal Difference(TD) Learning
- Exploration using ϵ -greedy approach
 - Taking only safe edges ensures safe learning

Monte-Carlo Methods

- Monte-Carlo Methods
 - Useful but leads a lot of back-propagation.
 - This increases messages in the network which we want to reduce

- Monte-Carlo Methods
 - Useful but leads a lot of back-propagation.
 - This increases messages in the network which we want to reduce
- Temporal Difference(TD) Learning
 - Learning without waiting for episode to end

- Monte-Carlo Methods
 - Useful but leads a lot of back-propagation.
 - This increases messages in the network which we want to reduce
- Temporal Difference(TD) Learning
 - Learning without waiting for episode to end
 - Special case TD(0) depends only on the value of current and next state-action pairs
 - $Q(s,a) = Q(s,a) + \alpha \cdot (R + \max(\gamma Q(s',a')) Q(s,a))$

Exploration

- *e*-greedy exploration gives stochastic convergence
 guarantees
- Ensures that all feasible paths in the network will eventually be explored

▶ Run at every node when a packet arrives

- Run at every node when a packet arrives
- Requires only current and next node Q-values
 - TD-Learning removes reward back propagation

- Run at every node when a packet arrives
- Requires only current and next node Q-values
 - TD-Learning removes reward back propagation
- Decentralised approach as each node makes its own decisions

- Run at every node when a packet arrives
- Requires only current and next node Q-values
 - TD-Learning removes reward back propagation
- Decentralised approach as each node makes its own decisions

Algorithm 1 Node Logic (u)1: for Every packet do if u =source node i then 2: $D_u = D_F //$ Initialise the deadline for each episode 3: $\delta_{it} = 0$ // Initiliaze total delay for packet = 0 4: for each edge $(u \rightarrow v)$ do 5: if $c_{uv} > D_u$ then // Unsafe Edge 6: P(u|v) = 07: else if $Q(u, v) = max(Q(u, a \in A))$ then 8: $P(u|v) = (1-\epsilon)$ 9: else 10: $P(u|v) = \epsilon / (size(\mathcal{F} - 1))$ 11: Choose edge $(u \to v)$ with P 12:Observe δ_{uv} 13: $\delta_{it} + = \delta_{uv}$ 14: $D_v = D_u - \delta_{uv}$ 15:R =Environment Reward Function (v, δ_{it}) 16:Q(u, v) = Value iteration from Equation 17:if v = t then 18: DONE 19:

- Run at every node when a packet arrives
- Requires only current and next node Q-values
 - TD-Learning removes reward back propagation
- Decentralised approach as each node makes its own decisions

```
Algorithm 1 Node Logic (u)
 1: for Every packet do
        if u = source node i then
 2:
            D_u = D_F // Initialise the deadline for each episode
 3:
            \delta_{it} = 0 // Initiliaze total delay for packet = 0
 4:
            each edge (u \rightarrow v) do
 5:
            if c_{uv} > D_u then // Unsafe Edge
                P(u|v) = 0
            else if Q(u, v) = max(Q(u, a \in A)) then
                P(u|v) = (1 - \epsilon)
 9:
            else
10:
                P(u|v) = \epsilon / (size(\mathcal{F} - 1))
        Choose edge (u \to v) with P
12:
        Observe \delta_{uv}
13:
        \delta_{it} + = \delta_{uv}
14:
        D_v = D_u - \delta_{uv}
15:
        R = \text{Environment Reward Function}(v, \delta_{it})
16:
        Q(u, v) = Value iteration from Equation
17:
        if v = t then
18:
            DONE
19:
```

Reward Function

- Reward assigned by the environment
- At the end of every episode/packet transmission
- Propagates to other nodes through TD(0)

Algorithm 1 Environment Reward Function (v, δ_{it})

1: Assigns the reward at the end of transmission

2: if
$$v = t$$
 then
3: $R = D_F - \delta_{it}$
4: else

5: R = 0

Episode	Path	Transmission Time

Episode	Path	Transmission Time

Episode	Path	Transmission Time

Episode	Path	Transmission Time
1	[i, t]	12

Episode	Path	Transmission Time
1	[i, t]	12

Episode	Path	Transmission Time
1	[i, t]	12

Episode	Path	Transmission Time
1	[i, t]	12
2	[i, x, -]	4

Episode	Path	Transmission Time
1	[i, t]	12
2	[i, x, t]	14

Episode	Path	Transmission Time
1	[i, t]	12
2	[i, x, t]	14

Episode	Path	Transmission Time
1	[i, t]	12
2	[i, x, t]	14
3	[i, x, y, t]	10

Episode	Path	Transmission Time
1	[i, t]	12
2	[i, x, t]	14
3	[i, x, y, t]	10
4	[i, x, y, t]	10

Evaluation

- Implemented using NetworkX^[1]
- Python graph generator package
- ▶ Compare our algorithm to Rapid Routing^[2] and classical RL

[1] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, <u>"Exploring network structure, dynamics, and function using NetworkX"</u>
 [2] S. Baruah, "Rapid routing with guaranteed delay bounds," in 2018 IEEE Real-Time Systems Symposium (RTSS), December 2018

Deadline	Path	No Variance Tx Time
20	[i, x, t]	14

Deadline	Path	No Variance Tx Time
20	[i, x, t]	14
25	[i, x, y, t]	10

Deadline	Path	No Variance Tx Time
20	[i, x, t]	14
25	[i, x, y, t]	10
30	[i, x, y, t]	10

Deadline	Path	No Variance Tx Time
20	[i, x, t]	14
25	[i, x, y, t]	10
30	[i, x, y, t]	10
35	[i, x, z, t]	6

Deadline	Path	No Variance Tx Time
20	[i, x, t]	14
25	[i, x, y, t]	10
30	[i, x, y, t]	10
35	[i, x, z, t]	6
40	[i, x, z, t]	6

▶ No Variance in the typical transmission times

Experiment 1: No Variance

- ► No Variance in the typical transmission times
- Paths taken by both Rapid Routing and Safe RL converge to the same

Experiment 1: No Variance

- No Variance in the typical transmission times
- Paths taken by both Rapid Routing and Safe RL converge to the same
- Average delays are slightly higher for Safe RL due to exploration

D_F	Optimal Path	Delays, Rapid Routing	Average Delays (1000 episodes)
15	Infeasible	_	_
20	${ m \{i,x,t\}}$	14	14
25	$\{i,x,y,t\}$	10	10.24
30	$\{i,x,y,t\}$	10	10.22
35	$\{ m i,x,z,t\}$	6	6.64
40	$\{i,x,z,t\}$	6	6.55

 Table 1: Optimal Path for Different Deadlines

Packet / Episode No.

× Classical RL ***** Rapid Routing O Safe RL

Deadline $D_F = 20$ 4030 20X × ×× 10 × 0 Deadline $D_F = 25$ 4030 20× × × Ж X X $\times \times$ X 10 Transmission Time 0 Deadline $D_F = 30$ 40 30 20×× ××××× × $^{\times}$ \times \times $^{\times}$ × v× ×××× X × × 10 $\times \times \times$ 0 Deadline $D_F = 35$ 4030 2010 \times × XX Х \times x x XX ×× 0 Deadline $D_F = 40$ 4030 20 $\times \times \times$ ×× × × ×× X × 10 ×х $\times \times$ 0

× Classical RL ***** Rapid Routing O Safe RL

Packet / Episode No.

250

300

350

400

200

50

0

100

150

Converges to the best path for all deadlines

 $\times \, {\rm Classical} \, \, {\rm RL} \bigstar {\rm Rapid} \, \, {\rm Routing} \bigcirc {\rm Safe} \, \, {\rm RL}$

× Classical RL ***** Rapid Routing O Safe RL

Videos 1 and 2

- Tests the adaptability of our algorithm
- Simulate congestion of network
- At episode **40**, $c_{ix}^T =$ **10** instead of $c_{ix}^T =$ **4**

- Tests the adaptability of our algorithm
- Simulate congestion of network
- At episode **40**, $c_{ix}^T =$ **10** instead of $c_{ix}^T =$ **4**

× Classical RL × Rapid Routing O Safe RL

× Classical RL ***** Rapid Routing O Safe RL

× Classical RL ***** Rapid Routing O Safe RL

× Classical RL ***** Rapid Routing O Safe RL

Video 3

Packet / Episode No.

Transmission Time

Packet / Episode No.

Packet / Episode No.

Classical RL has low complexity (ms), but doesn't provide guarantees

- Classical RL has low complexity (ms), but doesn't provide guarantees
- Rapid Routing needs to be rerun when typical tx time changes

- Classical RL has low complexity (ms), but doesn't provide guarantees
- Rapid Routing needs to be rerun when typical tx time changes
- Most complexity of safe RL comes from pre-processing stage. Run only once during network creation

Experiment 5: Computational time

- Classical RL has low complexity (ms), but doesn't provide guarantees
- Rapid Routing needs to be rerun when typical tx time changes
- Most complexity of safe RL comes from pre-processing stage. Run only once during network creation

• Applied reinforcement learning to routing over real-time networks

- Applied reinforcement learning to routing over real-time networks
- Augmented state-space allows safe exploration

- Applied reinforcement learning to routing over real-time networks
- Augmented state-space allows safe exploration
- Constant adaptation to changes in typical transmission time

- Applied reinforcement learning to routing over real-time networks
- Augmented state-space allows safe exploration
- Constant adaptation to changes in typical transmission time
- Compared to classical RL, our algorithm is robust and does not violate any deadlines

- Applied reinforcement learning to routing over real-time networks
- Augmented state-space allows safe exploration
- Constant adaptation to changes in typical transmission time
- Compared to classical RL, our algorithm is robust and does not violate any deadlines
- Compared to previous work, our algorithm
 - Adapts online to changes in typical transmission time
 - Is less computationally intensive

- Implement on a network emulator
 - Thank you Alex for pointers.

- Implement on a network emulator
 - Thank you Alex for pointers.
- Investigate probability propagation through network

- Implement on a network emulator
 - Thank you Alex for pointers.
- Investigate probability propagation through network
- Is there anyway to guarantee safety if loops are present in the network?

