
Adaptive Routing with Guaranteed
Delay Bounds using Safe
Reinforcement Learning

Gautham Nayak Seetanadi

 Martina Maggio, Karl-Erik Årzen

Dept. of Automatic Control, Lund University

‣ Route packets through a real-time network

‣ Give guarantees on total transmission delay

‣ Use reinforcement learning(RL) to explore the state-space

Problem Statement

‣ Route packets through a real-time network

‣ Give guarantees on total transmission delay

‣ Use reinforcement learning(RL) to explore the state-space

Problem Statement
DAG with worst case link delay

‣ Route packets through a real-time network

‣ Give guarantees on total transmission delay

‣ Use reinforcement learning(RL) to explore the state-space

Problem Statement
DAG with worst case link delay

Never violate preset deadline DF

‣ Route packets through a real-time network

‣ Give guarantees on total transmission delay

‣ Use reinforcement learning(RL) to explore the state-space

Problem Statement
DAG with worst case link delay

Never violate preset deadline DF

Eliminate need for complex routing
tables

‣ Route packets through a real-time network

‣ Give guarantees on total transmission delay

‣ Use reinforcement learning(RL) to learn the state-space

Problem Statement
DAG with worst case link delay

Never violate preset deadline DF

Eliminate need for complex routing
tables

Real-time routing requires guarantees

• RL is simple but powerful.

• RL is inherently stochastic.

https://github.com/AdaptiveRouting-using-RL/AdaptiveRoutingUsingRL

Try the algorithm yourself

‣ Route packets through a real-time network

‣ Give guarantees on total transmission delay

‣ Use reinforcement learning (RL) to explore the state-space

Motivation

‣ Typical transmission time over link varies over time

‣ RL based solutions

• Reduce total transmission times

• Do not provide guarantees

‣ Real-time solutions

• Provide Guarantees

• Depends on complex routing tables

• Does not react to disturbances

Motivation

‣ Typical transmission time over link varies over time

‣ Classical RL based solutions

• Reduce total transmission times

• Do not provide guarantees

‣ Real-time solutions

• Provide Guarantees

• Depends on complex routing tables

• Does not react to disturbances

Motivation

‣ Typical transmission time over link varies over time

‣ Classical RL based solutions

• Reduce total transmission times

• Do not provide guarantees

‣ Real-time solutions

• Provide Guarantees

• Depends on complex routing tables

• Does not react to disturbances

Motivation

‣ Typical transmission time over link varies over time

‣ Classical RL based solutions

• Reduce total transmission times

• Do not provide guarantees

‣ Real-time solution [1]

• Provide Guarantees

• Depends on complex routing tables

• Does not react to disturbances

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Motivation

‣ Typical transmission time over link varies over time

‣ Classical RL based solutions

• Reduce total transmission times

• Do not provide guarantees

‣ Real-time solution [1]

• Provide Guarantees

• Depends on complex routing tables

• Does not react to disturbances

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Example Network Overview

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Origin Destination

Example Network Overview

Origin Destination

i

x y

z

t

Example Network Overview

 = Worst case transmission time over x,ycWxy

i

x y

z

t

10

10

10

25

10

15

15

Example Network Overview

 = Worst case transmission time over x,ycWxy

cTxy = Typical transmission time over x,y

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Example Network Overview

 = Worst case transmission time over x,ycWxy

cTxy = Typical transmission time over x,y

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Example Network Overview

 = Worst case transmission time over x,ycWxy

cTxy = Typical transmission time over x,y

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Why is this complicated??

Example Network Overview

PATH δ DF

Typical delay to t

Deadline

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Example Network Overview

PATH

12 25

δ DF

i → tTypical delay to t

Deadline

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Example Network Overview

PATH

12 25

14 20

δ DF

i → x → t

i → tTypical delay to t

Deadline

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Example Network Overview

Example Network Overview
PATH

12 25

14 20

10 30

δ DF

i → x → t

i → t

i → x → y → t

Typical delay to t

Deadline

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

PATH

12 25

14 20

10 30

6 40

δ DF

i → x → t

i → t

i → x → y → t

i → x → z → t

Typical delay to t

Deadline

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Example Network Overview

PATH

12 25

14 20

10 30

6 40

δ DF

i → x → t

i → t

i → x → y → t

i → x → z → t

Typical delay to t

Deadline

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Example Network Overview

The Beginning

Previous work [1]

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Previous work [1]

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Edge
x 10 20

δ DF

≥

Edge
y 6 [20,30)

)z 2 30
t 10 [10,20)

δ DF

≥

Edge
t 1 15

δ
≥
DF

Edge
t 3 10

δ DF

≥

Typical delay to t

Remaining delay bound

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Previous work [1]

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Edge
x 10 20

δ DF

≥

Edge
y 6 [20,30)

)z 2 30
t 10 [10,20)

δ DF

≥

Edge
t 1 15

δ
≥
DF

Edge
t 3 10

δ DF

≥

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Drawbacks
• Huge tables for large number of nodes

• Recalculate table for every change

Previous work [1]

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Edge
x 10 20

δ DF

≥

Edge
y 6 [20,30)

)z 2 30
t 10 [10,20)

δ DF

≥

Edge
t 1 15

δ
≥
DF

Edge
t 3 10

δ DF

≥

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Drawbacks
• Huge tables for large number of nodes and edges

• Recalculate table for every change

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Previous work [1]

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Edge
x 10 20

δ DF

≥

Edge
y 6 [20,30)

)z 2 30
t 10 [10,20)

δ DF

≥

Edge
t 1 15

δ
≥
DF

Edge
t 3 10

δ DF

≥Drawbacks
• Huge tables for large number of nodes and edges

• Recalculate table for every change

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Previous work [1]

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Edge
x 10 20

δ DF

≥

Edge
y 6 [20,30)

)z 2 30
t 10 [10,20)

δ DF

≥

Edge
t 1 15

δ
≥
DF

Edge
t 3 10

δ DF

≥

Our solution?

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Previous work [1]

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Edge
x 10 20

δ DF

≥

Edge
y 6 [20,30)

)z 2 30
t 10 [10,20)

δ DF

≥

Edge
t 1 15

δ
≥
DF

Edge
t 3 10

δ DF

≥

Our solution?
Use Reinforcement Learning

Reinforcement Learning
‣ Branch of machine learning that is unsupervised

‣ Making a system learn how to behave by trial and error in
episodic manner

‣ Learns to maximise a reward

Reinforcement Learning
‣ Branch of machine learning that is unsupervised

‣ Agent teaches itself how to behave by trial and error in
episodic manner

‣ Learns to maximise a reward

Reinforcement Learning
‣ Branch of machine learning that is unsupervised

‣ Agent teaches itself how to behave by trial and error in
episodic manner

‣ Learns to maximise a reward returned by the environment

Lunch Mario Routing

Lunch Mario Routing

Agent You Mario/Luigi Node

Lunch Mario Routing

Agent You Mario/Luigi Node

Action Set (A)
• Inspira

• Finn Inn

• Govindas

Movement Possible edges

Lunch Mario Routing

Agent You Mario/Luigi Node

Action Set (A)
• Inspira

• Finn Inn

• Govindas

Movement Possible edges

Environment Lund Super Mario world Network

Lunch Mario Routing

Agent You Mario/Luigi Node

Action Set (A)
• Inspira

• Finn Inn

• Govindas

Movement Possible edges

Environment Lund Super Mario world Network

State (S)
• Hungry?

• Teaching?

• Salary?

Place in the world

• Goombas?

• Peach?

• Current node

• Time left

Lunch Mario Routing

Agent You Mario/Luigi Node

Action Set (A)
• Inspira

• Finn Inn

• Govindas

Movement Possible edges

Environment Lund Super Mario world Network

State (S)
• Hungry?

• Teaching?

• Salary?

Place in the world

• Goombas?

• Peach?

• Current node

• Time left

Reward (R)
(Immediate or Delayed) Food Satisfaction Points Total amount of time saved

Lunch Mario Routing

Agent You Mario/Luigi Node

Action Set (A)
• Inspira

• Finn Inn

• Govindas

Movement Possible edges

Environment Lund Super Mario world Network

State (S)
• Hungry?

• Teaching?

• Salary?

Place in the world

• Goombas?

• Peach?

• Current node

• Time left

Reward (R)
(Immediate or Delayed) Food Satisfaction Points Total amount of time saved

Policy ()
(Exploitation vs

Exploration)

Greedy, - greedy

• Stick to Inspira

• Try the new restaurant

• Jump on the goomba

• Go down the pipe

• Choose the path with
lowest delay

• Explore an edge

π
ϵ

Lunch Mario Routing

Agent You Mario/Luigi Node

Action Set (A)
• Inspira

• Finn Inn

• Govindas

Movement Possible edges

Environment Lund Super Mario world Network

State (S)
• Hungry?

• Teaching?

• Salary?

Place in the world

• Goombas?

• Peach?

• Current node

• Time left

Reward (R)
(Immediate or Delayed) Food Satisfaction Points Total amount of time saved

Policy ()
(Exploitation vs

Exploration)

Greedy, - greedy

• Stick to Inspira

• Try the new restaurant

• Jump on the goomba

• Go down the pipe

• Choose the path with
lowest delay

• Explore an edge

Value (V) Expected reward of being in the current state.

ϵ
π

Lunch Mario Routing

Agent You Mario/Luigi Node

Action Set (A)
• Inspira

• Finn Inn

• Govindas

Movement Possible edges

Environment Lund Super Mario world Network

State (S)
• Hungry?

• Teaching?

• Salary?

Place in the world

• Goombas?

• Peach?

• Current node

• Time left

Reward (R)
(Immediate or Delayed) Food Satisfaction Points Total amount of time saved

Policy ()
(Exploitation vs

Exploration)

Greedy, - greedy

• Stick to Inspira

• Try the new restaurant

• Jump on the goomba

• Go down the pipe

• Choose the path with
lowest delay

• Explore an edge

Value (V) Expected reward of being in the current state.

Q-Value (Q) Similar to V but maps state-action pairs to rewards.

ϵ
π

Reinforcement learning

‣ The routing problem can be formalised as a Markov
Decision Process (MDP) consisting of:

• Finite set of states (S)

• Finite set of actions from each state (A)

• Probability of transition from one state to another (P)

• Rewards from each state (R)

‣ In our state space, we encode the current vertex and total
time elapsed from the beginning

Reinforcement learning

‣ The routing problem can be formalised as a Markov
Decision Process (MDP) consisting of:

• Finite set of states (S)

• Finite set of actions from each state (A)

• Probability of transition from one state to another (P)

• Rewards from each state (R)

‣ In our state space, we encode the current vertex and total
time elapsed from the beginning

Reinforcement learning

‣ The routing problem can be formalised as a Markov
Decision Process (MDP) consisting of:

• Finite set of states (S)

• Finite set of actions from each state (A)

• Probability of transition from one state to another (P)

• Rewards from each state (R)

‣ In our state space, we encode the current vertex and total
time elapsed from the beginning

Reinforcement learning

‣ The routing problem can be formalised as a Markov
Decision Process (MDP) consisting of:

• Finite set of states (S)

• Finite set of actions from each state (A)

• Probability of transition from one state to another (P)

• Rewards from each state (R)

‣ In our state space, we encode the current vertex and total
time elapsed from the beginning

Reinforcement learning

‣ The routing problem can be formalised as a Markov
Decision Process (MDP) consisting of:

• Finite set of states (S)

• Finite set of actions from each state (A)

• Probability of transition from one state to another (P)

• Rewards from each state (R)

‣ In our state space, we encode the current vertex and total
time elapsed from the beginning

Reinforcement learning

‣ The routing problem can be formalised as a Markov
Decision Process (MDP) consisting of:

• Finite set of states (S)

• Finite set of actions from each state (A)

• Probability of transition from one state to another (P)

• Rewards from each state (R)

‣ In our state space, we encode the current vertex and total
time elapsed from the beginning

State-Space Example
‣ Consider a scenario with :-

• Source node i, destination node t

• Maximum admissible time, = 25DF

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

20

20

10

25

10

30

15

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i13

i14

i15

i16

i17

i18

i19

i20

i21

i22

i23

i24

i25

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16

y17

y18

y19

y20

y21

y22

y23

y24

y25

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t21

t22

t23

t24

t25

 = 25DF

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

20

20

10

25

10

30

15

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i13

i14

i15

i16

i17

i18

i19

i20

i21

i22

i23

i24

i25

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16

y17

y18

y19

y20

y21

y22

y23

y24

y25

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t21

t22

t23

t24

t25

Unsafe States

 = 25DF

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

20

20

10

25

10

30

15

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i13

i14

i15

i16

i17

i18

i19

i20

i21

i22

i23

i24

i25

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16

y17

y18

y19

y20

y21

y22

y23

y24

y25

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t21

t22

t23

t24

t25

Unreachable
states

 = 25DF

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

20

20

10

25

10

30

15

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i13

i14

i15

i16

i17

i18

i19

i20

i21

i22

i23

i24

i25

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16

y17

y18

y19

y20

y21

y22

y23

y24

y25

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t21

t22

t23

t24

t25

 = 25DF

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

20

20

10

25

10

30

15

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i13

i14

i15

i16

i17

i18

i19

i20

i21

i22

i23

i24

i25

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16

y17

y18

y19

y20

y21

y22

y23

y24

y25

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t21

t22

t23

t24

t25

Dijkstras shortest path
‣ Versatile algorithm to find shortest path from starting to target node

in a weighted graph

‣ Forms the basis of pre-processing stage

‣ Gives the tightest deadline that can be guaranteed over each linkDF

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Dijkstras shortest path
‣ Versatile algorithm to find shortest path from starting to target node

in a weighted graph

‣ Forms the basis of pre-processing stage

‣ Gives the tightest deadline that can be guaranteed over each linkDF

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Dijkstras shortest path
‣ Versatile algorithm to find shortest path from starting to target node

in a weighted graph

‣ Forms the basis of pre-processing stage

‣ Gives the tightest deadline that can be guaranteed over each linkDF

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Dijkstras shortest path

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

20

20

10

25

10

30

15

Dijkstras shortest path

Calculate shortest path from next
node to destination

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

20

20

10

25

10

30

15

Dijkstras shortest path

Reduced computation when run
from destination to source

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

20

20

10

25

10

30

15

Pre-processing phase

‣ Required irrespective of the algorithm used to provide
guarantees

‣ Uses Dijkstra's algorithm to find smallest delay that can be
guaranteed to the destination

‣ Calculated for each link in the network

Pre-processing phase

‣ Required irrespective of the algorithm used to provide
guarantees

‣ Uses Dijkstra's algorithm to find smallest delay that can be
guaranteed to the destination

‣ Calculated for each link in the network

Pre-processing phase

‣ Required irrespective of the algorithm used to provide
guarantees

‣ Uses Dijkstra's algorithm to find smallest delay that can be
guaranteed to the destination

‣ Calculated for each link in the network

Routing with safe reinforcement learning

‣ Chooses optimal path in dynamic environmental
conditions

‣ While ensuring never to violate deadline restrictions

‣ Algorithm has two phases

• Pre-processing phase

• Run-time phase

Routing with safe reinforcement learning

‣ Chooses optimal path in dynamic environmental
conditions

‣ While ensuring never to violate deadline restrictions

‣ Algorithm has two phases

• Pre-processing phase

• Run-time phase

‣ The environment returns the reward after each episode

Routing with safe reinforcement learning

‣ Chooses optimal path in dynamic environmental
conditions

‣ While ensuring never to violate deadline restrictions

‣ Algorithm has two phases

• Pre-processing phase

• Run-time phase

‣ The environment returns the reward after each episode

Thanks to the truncated state-space

Routing with safe reinforcement learning

‣ Chooses optimal path in dynamic environmental
conditions

‣ While ensuring never to violate deadline restrictions

‣ Algorithm has two phases

• Pre-processing phase

• Run-time phase

‣ The environment returns the reward after each episode

Routing with safe reinforcement learning

‣ Chooses optimal path in dynamic environmental
conditions

‣ While ensuring never to violate deadline restrictions

‣ Algorithm has two phases

• Pre-processing phase (Dijkstras algorithm)

• Run-time phase

‣ The environment returns the reward after each episode

Routing with safe reinforcement learning

‣ Chooses optimal path in dynamic environmental
conditions

‣ While ensuring never to violate deadline restrictions

‣ Algorithm has two phases

• Pre-processing phase (Dijkstras algorithm)

• Run-time phase

‣ The environment returns the reward after each episode

Routing with safe reinforcement learning

‣ Chooses optimal path in dynamic environmental
conditions

‣ While ensuring never to violate deadline restrictions

‣ Algorithm has two phases

• Pre-processing phase (Dijkstras algorithm)

• Run-time phase

‣ The environment returns the reward after each episode

Routing with safe reinforcement learning

‣ Value iteration updates a value of being in a state,
improving future episodes

‣ Popular Methods

• Monte Carlo value estimation

• Temporal Difference(TD) Learning

‣ Exploration using -greedy approach

• Taking only safe edges ensures safe learning

ϵ

Routing with safe reinforcement learning

‣ Value iteration updates a value of being in a state,
improving future episodes

‣ Popular Methods

• Monte Carlo value estimation

• Temporal Difference(TD) Learning

‣ Exploration using -greedy approach

• Taking only safe edges ensures safe learning

ϵ

Routing with safe reinforcement learning

‣ Value iteration updates a value of being in a state,
improving future episodes

‣ Popular Methods

• Monte Carlo value estimation

• Temporal Difference(TD) Learning

‣ Exploration using -greedy approach

• Taking only safe edges ensures safe learning

ϵ

Value Update
‣ Monte-Carlo Methods

• Useful but leads a lot of back-propagation.

• This increases messages in the network which we want to
reduce

‣ Temporal Difference(TD) Learning

• Learning without waiting for episode to end

• Special case TD(0) depends only on the value of current and next
state-action pairs

• Q(s, a) = Q(s, a) + α ⋅ (R + max(γ Q(s′�, a′�)) − Q(s, a))

Value Update
‣ Monte-Carlo Methods

• Useful but leads a lot of back-propagation.

• This increases messages in the network which we want to
reduce

‣ Temporal Difference(TD) Learning

• Learning without waiting for episode to end

• Special case TD(0) depends only on the value of current and next
state-action pairs

• Q(s, a) = Q(s, a) + α ⋅ (R + max(γ Q(s′�, a′�)) − Q(s, a))

Value Update
‣ Monte-Carlo Methods

• Useful but leads a lot of back-propagation.

• This increases messages in the network which we want to
reduce

‣ Temporal Difference(TD) Learning

• Learning without waiting for episode to end

• Special case TD(0) depends only on the value of current and next
state-action pairs

• Q(s, a) = Q(s, a) + α ⋅ (R + max(γ Q(s′�, a′�)) − Q(s, a))

Value Update
‣ Monte-Carlo Methods

• Useful but leads a lot of back-propagation.

• This increases messages in the network which we want to
reduce

‣ Temporal Difference(TD) Learning

• Learning without waiting for episode to end

• Special case TD(0) depends only on the value of current and next
state-action pairs

• Q(s, a) = Q(s, a) + α ⋅ (R + max(γ Q(s′�, a′�)) − Q(s, a))

Exploration

‣ -greedy exploration gives stochastic convergence
guarantees

‣ Ensures that all feasible paths in the network will
eventually be explored

ϵ

Run-time phase
‣ Run at every node when a packet arrives

‣ Requires only current and next node Q-values

• TD-Learning removes reward back propagation

‣Decentralised approach as each node makes its own decisions

Run-time phase
‣ Run at every node when a packet arrives

‣ Requires only current and next node Q-values

• TD-Learning removes reward back propagation

‣Decentralised approach as each node makes its own decisions

Run-time phase
‣ Run at every node when a packet arrives

‣ Requires only current and next node Q-values

• TD-Learning removes reward back propagation

‣Decentralised approach as each node makes its own decisions

Run-time phase
‣ Run at every node when a packet arrives

‣ Requires only current and next node Q-values

• TD-Learning removes reward back propagation

‣Decentralised approach as each node makes its own decisions

Algorithm 1 Node Logic (u)

1: for Every packet do
2: if u = source node i then
3: Du = DF // Initialise the deadline for each episode

4: �it = 0 // Initiliaze total delay for packet = 0

5: for each edge (u ! v) do
6: if cuv > Du then // Unsafe Edge

7: P (u|v) = 0

8: else if Q(u, v) = max(Q(u, a 2 A)) then
9: P (u|v) = (1� ✏)

10: else
11: P (u|v) = ✏/(size(F � 1))

12: Choose edge (u ! v) with P
13: Observe �uv
14: �it += �uv
15: Dv = Du � �uv
16: R = Environment Reward Function(v, �it)
17: Q(u, v) = Value iteration from Equation

18: if v = t then
19: DONE

1

Run-time phase
‣ Run at every node when a packet arrives

‣ Requires only current and next node Q-values

• TD-Learning removes reward back propagation

‣Decentralised approach as each node makes its own decisions

Algorithm 1 Node Logic (u)

1: for Every packet do
2: if u = source node i then
3: Du = DF // Initialise the deadline for each episode

4: �it = 0 // Initiliaze total delay for packet = 0

5: for each edge (u ! v) do
6: if cuv > Du then // Unsafe Edge

7: P (u|v) = 0

8: else if Q(u, v) = max(Q(u, a 2 A)) then
9: P (u|v) = (1� ✏)

10: else
11: P (u|v) = ✏/(size(F � 1))

12: Choose edge (u ! v) with P
13: Observe �uv
14: �it += �uv
15: Dv = Du � �uv
16: R = Environment Reward Function(v, �it)
17: Q(u, v) = Value iteration from Equation

18: if v = t then
19: DONE

1

Reward Function

Algorithm 1 Environment Reward Function(v, �it)

1: Assigns the reward at the end of transmission
2: if v = t then
3: R = DF � �it
4: else
5: R = 0

1

‣ Reward assigned by the environment

‣ At the end of every episode/packet transmission

‣ Propagates to other nodes through TD(0)

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time

Origin

Destination

Episode 1

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time

Both Paths Feasible

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12

Both Paths Feasible

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12

Episode 2

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12

Both Paths Feasible

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12
2 [i, x, -] 4

Say Tx time = 4

So, Remaining time,
new = 25-4 = 21 DF

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12
2 [i, x, -] 4

Say Tx time = 4

So, Remaining time,
new = 25-4 = 21 DF

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12
2 [i, x, t] 14

Say Tx time = 10

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12
2 [i, x, t] 14

Current Best Path

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12
2 [i, x, t] 14

Episode 3

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12
2 [i, x, t] 14
3 [i, x, -] 4

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12
2 [i, x, t] 14
3 [i, x, y] 7

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12
2 [i, x, t] 14
3 [i, x, y, t] 10

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12
2 [i, x, t] 14
3 [i, x, y, t] 10

New Best Path

An Example. = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Episode Path Transmission Time
1 [i, t] 12
2 [i, x, t] 14
3 [i, x, y, t] 10
4 [i, x, y, t] 10

Choose best path with
higher probability for
future transmissions

Evaluation

‣ Implemented using NetworkX[1]

‣ Python graph generator package

‣ Compare our algorithm to Rapid Routing[2] and classical RL

[2] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

[1] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network structure, dynamics, and function using NetworkX”

http://conference.scipy.org/proceedings/SciPy2008/paper_2/

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Deadline Path No Variance Tx Time
20 [i, x, t] 14

 = 20DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Deadline Path No Variance Tx Time
20 [i, x, t] 14
25 [i, x, y, t] 10

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

 = 20DF = 25DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Deadline Path No Variance Tx Time
20 [i, x, t] 14
25 [i, x, y, t] 10
30 [i, x, y, t] 10

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

 = 20DF = 25DF = 30DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Deadline Path No Variance Tx Time
20 [i, x, t] 14
25 [i, x, y, t] 10
30 [i, x, y, t] 10
35 [i, x, z, t] 6

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

 = 20DF = 25DF = 30DF

 = 35DF

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Deadline Path No Variance Tx Time
20 [i, x, t] 14
25 [i, x, y, t] 10
30 [i, x, y, t] 10
35 [i, x, z, t] 6
40 [i, x, z, t] 6

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

 = 20DF = 25DF = 30DF

 = 35DF = 40DF

Experiment 1: No Variance. δ = cT
xy

‣ No Variance in the typical transmission times

‣ Paths taken by both Rapid Routing and Safe RL converge to the
same

‣ Average delays are slightly higher for Safe RL due to exploration

Experiment 1: No Variance

‣ No Variance in the typical transmission times

‣ Paths taken by both Rapid Routing and Safe RL converge to the
same

‣ Average delays are slightly higher for Safe RL due to exploration

Experiment 1: No Variance

Table 1: Optimal Path for Di↵erent Deadlines

DF Optimal Path Delays, Rapid Routing Average Delays (1000 episodes)

15 Infeasible - -

20 {i,x,t} 14 14

25 {i,x,y,t} 10 10.24

30 {i,x,y,t} 10 10.22

35 {i,x,z,t} 6 6.64

40 {i,x,z,t} 6 6.55

‣ No Variance in the typical transmission times

‣ Paths taken by both Rapid Routing and Safe RL converge to the
same

‣ Average delays are slightly higher for Safe RL due to exploration

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 50 100 150 200 250 300 350 400 450 500
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

Experiment 1: No Variance. δ = cT
xy

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 50 100 150 200 250 300 350 400 450 500
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

Experiment 1: No Variance. δ = cT
xy

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 50 100 150 200 250 300 350 400 450 500
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

Converges to the best
path for all deadlines

Experiment 1: No Variance. δ = cT
xy

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 50 100 150 200 250 300 350 400 450 500
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

• Classical RL takes unsafe path
• RR choses the path according to

table

Experiment 1: No Variance. δ = cT
xy

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 50 100 150 200 250 300 350 400 450 500
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

Safe RL converges to RR path after
enough episodes

Experiment 1: No Variance. δ = cT
xy

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 50 100 150 200 250 300 350 400 450 500
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

Experiment 1: No Variance. δ = cT
xy

Videos 1 and 2

‣ Tests the adaptability of our algorithm

‣ Simulate congestion of network

‣ At episode 40, = 10 instead of = 4cT
ix cT

ix

Experiment 2: Congestion on link

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

‣ Tests the adaptability of our algorithm

‣ Simulate congestion of network

‣ At episode 40, = 10 instead of = 4cT
ix cT

ix

Experiment 2: Congestion on link

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15
10

Experiment 2: Congestion on link.

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 50 100 150 200 250 300 350 400 450 500
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

Experiment 2: Congestion on link

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 50 100 150 200 250 300 350 400 450 500
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

Experiment 2: Congestion on link

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 50 100 150 200 250 300 350 400 450 500
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

Experiment 2: Congestion on link

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 50 100 150 200 250 300 350 400 450 500
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

• When =20, the only safe path is
[i,x,t], results in higher tx times

• RR doesn’t consider disturbance as
its based on static tables.

• One way to mitigate it is to redo the
pre-processing/tables

DF

Experiment 2: Congestion on link

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 50 100 150 200 250 300 350 400 450 500
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

Video 3

Experiment 3a: Truncated Normal Distribution

0
10
20
30
40

DF = 20 DF = 25

Variance = 1

DF = 30 DF = 35 DF = 40

0
10
20
30
40

Variance = 2

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Variance = 3

0
10
20
30
40

Variance = 4

0 1000
0
10
20
30
40

0 1000 0 1000

Packet / Episode No.

Variance = 5

0 1000 0 1000

0
10
20
30
40

DF = 20 DF = 25

Variance = 1

DF = 30 DF = 35 DF = 40

0
10
20
30
40

Variance = 2

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Variance = 3

0
10
20
30
40

Variance = 4

0 1000
0
10
20
30
40

0 1000 0 1000

Packet / Episode No.

Variance = 5

0 1000 0 1000

Experiment 3a: Truncated Normal Distribution

Experiment 3b: Uniform Distribution

0
10
20
30
40

DF = 20 DF = 25

Variance = 1

DF = 30 DF = 35 DF = 40

0
10
20
30
40

Variance = 2

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Variance = 3

0
10
20
30
40

Variance = 4

0 1000
0
10
20
30
40

0 1000 0 1000

Packet / Episode No.

Variance = 5

0 1000 0 1000

Experiment 3b: Uniform Distribution

0
10
20
30
40

DF = 20 DF = 25

Variance = 1

DF = 30 DF = 35 DF = 40

0
10
20
30
40

Variance = 2

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Variance = 3

0
10
20
30
40

Variance = 4

0 1000
0
10
20
30
40

0 1000 0 1000

Packet / Episode No.

Variance = 5

0 1000 0 1000

Experiment 4: WC-Uniform Distribution. 0 < δ ≤ cW
xy

0
10
20
30
40

Classical RL

DF = 20

Rapid Routing Safe RL

0
10
20
30
40

DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

DF = 30

0
10
20
30
40

DF = 35

0 500 1000
0

20

40

0 500 1000

Packet / Episode No.

DF = 40

0 500 1000

0
10
20
30
40

Classical RL

DF = 20

Rapid Routing Safe RL

0
10
20
30
40

DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

DF = 30

0
10
20
30
40

DF = 35

0 500 1000
0

20

40

0 500 1000

Packet / Episode No.

DF = 40

0 500 1000

Experiment 4: WC-Uniform Distribution. 0 < δ ≤ cW
xy

0
10
20
30
40

Classical RL

DF = 20

Rapid Routing Safe RL

0
10
20
30
40

DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

DF = 30

0
10
20
30
40

DF = 35

0 500 1000
0

20

40

0 500 1000

Packet / Episode No.

DF = 40

0 500 1000

Experiment 4: WC-Uniform Distribution. 0 < δ ≤ cW
xy

0
10
20
30
40

Classical RL

DF = 20

Rapid Routing Safe RL

0
10
20
30
40

DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

DF = 30

0
10
20
30
40

DF = 35

0 500 1000
0

20

40

0 500 1000

Packet / Episode No.

DF = 40

0 500 1000

Experiment 4: WC-Uniform Distribution. 0 < δ ≤ cW
xy

Video 4

Experiment 5: Large Networks

0
20
40
60
80
100

Conventional Learning
Average Delay (smoothed) Deadline (smoothed)

0
20
40
60
80

100

T
ra
n
sm

is
si
on

T
im

e

Rapid Routing
Average Delay (smoothed) Deadline (smoothed)

0 50 100 150 200 250 300 350 400 450 500
0
20
40
60
80

100

Number of Nodes in the Network

Safe Reinforcement Learning
Average Delay (smoothed) Deadline (smoothed)

Experiment 5: Large Networks

0
20
40
60
80
100

Conventional Learning
Average Delay (smoothed) Deadline (smoothed)

0
20
40
60
80

100

T
ra
n
sm

is
si
on

T
im

e

Rapid Routing
Average Delay (smoothed) Deadline (smoothed)

0 50 100 150 200 250 300 350 400 450 500
0
20
40
60
80

100

Number of Nodes in the Network

Safe Reinforcement Learning
Average Delay (smoothed) Deadline (smoothed)

Experiment 5: Large Networks

0
20
40
60
80
100

Conventional Learning
Average Delay (smoothed) Deadline (smoothed)

0
20
40
60
80

100

T
ra
n
sm

is
si
on

T
im

e

Rapid Routing
Average Delay (smoothed) Deadline (smoothed)

0 50 100 150 200 250 300 350 400 450 500
0
20
40
60
80

100

Number of Nodes in the Network

Safe Reinforcement Learning
Average Delay (smoothed) Deadline (smoothed)

Experiment 5: Large Networks

0
20
40
60
80
100

Conventional Learning
Average Delay (smoothed) Deadline (smoothed)

0
20
40
60
80

100

T
ra
n
sm

is
si
on

T
im

e

Rapid Routing
Average Delay (smoothed) Deadline (smoothed)

0 50 100 150 200 250 300 350 400 450 500
0
20
40
60
80

100

Number of Nodes in the Network

Safe Reinforcement Learning
Average Delay (smoothed) Deadline (smoothed)

Experiment 5: Computational time

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

Number of Nodes in the Network

T
im

e[
s]

Classical RL Rapid Routing Safe RL

‣ Classical RL has low complexity (ms), but doesn’t provide guarantees

‣ Rapid Routing needs to be rerun when typical tx time changes

‣ Most complexity of safe RL comes from pre-processing stage. Run only once
during network creation

Experiment 5: Computational time

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

Number of Nodes in the Network

T
im

e[
s]

Classical RL Rapid Routing Safe RL

‣ Classical RL has low complexity (ms), but doesn’t provide guarantees

‣ Rapid Routing needs to be rerun when typical tx time changes

‣ Most complexity of safe RL comes from pre-processing stage. Run only once
during network creation

Experiment 5: Computational time

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

Number of Nodes in the Network

T
im

e[
s]

Classical RL Rapid Routing Safe RL

‣ Classical RL has low complexity (ms), but doesn’t provide guarantees

‣ Rapid Routing needs to be rerun when typical tx time changes

‣ Most complexity of safe RL comes from pre-processing stage. Run only once
during network creation

Experiment 5: Computational time

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

Number of Nodes in the Network

T
im

e[
s]

Classical RL Rapid Routing Safe RL

‣ Classical RL has low complexity (ms), but doesn’t provide guarantees

‣ Rapid Routing needs to be rerun when typical tx time changes

‣ Most complexity of safe RL comes from pre-processing stage. Run only once
during network creation

Experiment 5: Computational time
‣ Classical RL has low complexity (ms), but doesn’t provide guarantees

‣ Rapid Routing needs to be rerun when typical tx time changes

‣ Most complexity of safe RL comes from pre-processing stage. Run only once
during network creation

0 50 100 150 200 250 300 350 400 450 500

10�1

100

101

102

Number of Nodes in the Network

T
im

e[
s]

Classical RL Rapid Routing Safe RL

Conclusion
‣ Applied reinforcement learning to routing over real-time networks

‣ Augmented state-space allows safe exploration

‣ Constant adaptation to changes in typical transmission time

‣ Compared to classical RL, our algorithm is robust and does not
violate any deadlines

‣ Compared to previous work, our algorithm

• Adapts online to changes in typical transmission time

• Is less computationally intensive

Conclusion
‣ Applied reinforcement learning to routing over real-time networks

‣ Augmented state-space allows safe exploration

‣ Constant adaptation to changes in typical transmission time

‣ Compared to classical RL, our algorithm is robust and does not
violate any deadlines

‣ Compared to previous work, our algorithm

• Adapts online to changes in typical transmission time

• Is less computationally intensive

Conclusion
‣ Applied reinforcement learning to routing over real-time networks

‣ Augmented state-space allows safe exploration

‣ Constant adaptation to changes in typical transmission time

‣ Compared to classical RL, our algorithm is robust and does not
violate any deadlines

‣ Compared to previous work, our algorithm

• Adapts online to changes in typical transmission time

• Is less computationally intensive

Conclusion
‣ Applied reinforcement learning to routing over real-time networks

‣ Augmented state-space allows safe exploration

‣ Constant adaptation to changes in typical transmission time

‣ Compared to classical RL, our algorithm is robust and does not
violate any deadlines

‣ Compared to previous work, our algorithm

• Adapts online to changes in typical transmission time

• Is less computationally intensive

Conclusion
‣ Applied reinforcement learning to routing over real-time networks

‣ Augmented state-space allows safe exploration

‣ Constant adaptation to changes in typical transmission time

‣ Compared to classical RL, our algorithm is robust and does not
violate any deadlines

‣ Compared to previous work, our algorithm

• Adapts online to changes in typical transmission time

• Is less computationally intensive

Future Work

‣ Implement on a network emulator

• Thank you Alex for pointers.

‣ Investigate probability propagation through network

‣ Is there anyway to guarantee safety if loops are present in
the network?

Future Work

‣ Implement on a network emulator

• Thank you Alex for pointers.

‣ Investigate probability propagation through network

‣ Is there anyway to guarantee safety if loops are present in
the network?

Future Work

‣ Implement on a network emulator

• Thank you Alex for pointers.

‣ Investigate probability propagation through network

‣ Is there anyway to guarantee safety if loops are present in
the network?

Future Work

‣ Implement on a network emulator

• Thank you Alex for pointers.

‣ Investigate probability propagation through network

‣ Is there anyway to guarantee safety if loops are present in
the network?

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

0
20
40
60
80
100

Conventional Learning
Average Delay (smoothed) Deadline (smoothed)

0
20
40
60
80

100

T
ra
n
sm

is
si
on

T
im

e

Rapid Routing
Average Delay (smoothed) Deadline (smoothed)

0 50 100 150 200 250 300 350 400 450 500
0
20
40
60
80

100

Number of Nodes in the Network

Safe Reinforcement Learning
Average Delay (smoothed) Deadline (smoothed)

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

Number of Nodes in the Network

T
im

e[
s]

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

T
ra
n
sm

is
si
on

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 50 100 150 200 250 300 350 400 450 500
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

gautham@control.lth.se

mailto:gautham@control.lth.se

