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‣ Route packets through a real-time network 

‣ Give guarantees on total transmission delay 

‣ Use reinforcement learning(RL) to learn the state-space

Problem Statement
DAG with worst case link delay

Never violate preset deadline DF

Eliminate need for complex routing 
tables

Real-time routing requires guarantees 

• RL is simple but powerful. 

• RL is inherently stochastic.



https://github.com/AdaptiveRouting-using-RL/AdaptiveRoutingUsingRL

Try the algorithm yourself

‣ Route packets through a real-time network 

‣ Give guarantees on total transmission delay 

‣ Use reinforcement learning (RL) to explore the state-space
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Policy (  ) 
(Exploitation vs 

Exploration)

Greedy,    - greedy 

• Stick to Inspira

• Try the new restaurant

• Jump on the goomba

• Go down the pipe

• Choose the path with 
lowest delay


• Explore an edge

Value (V) Expected reward of being in the current state. 

Q-Value (Q) Similar to V but maps state-action pairs to rewards.

ϵ
π



Reinforcement learning

‣ The routing problem can be formalised as a Markov 
Decision Process (MDP) consisting of: 

• Finite set of states (S) 

• Finite set of actions from each state (A) 

• Probability of transition from one state to another (P)  

• Rewards from each state (R) 

‣ In our state space, we encode the current vertex and total 
time elapsed from the beginning
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State-Space Example
‣ Consider a scenario with :-  

• Source node i, destination node t 

• Maximum admissible time,  = 25DF
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Unreachable 
states
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Dijkstras shortest path
‣ Versatile algorithm to find shortest path from starting to target node 

in a weighted graph 

‣ Forms the basis of pre-processing stage 

‣ Gives the tightest deadline  that can be guaranteed over each linkDF
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Dijkstras shortest path

Calculate shortest path from next 
node to destination
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Dijkstras shortest path

Reduced computation when run 
from destination to source
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Pre-processing phase

‣ Required irrespective of the algorithm used to provide 
guarantees 

‣ Uses Dijkstra's algorithm to find smallest delay that can be 
guaranteed to the destination 

‣ Calculated for each link in the network
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Routing with safe reinforcement learning

‣ Value iteration updates a value of being in a state, 
improving future episodes 

‣ Popular Methods 

• Monte Carlo value estimation 

• Temporal Difference(TD) Learning 

‣ Exploration using  -greedy approach 

• Taking only safe edges ensures safe learning

ϵ
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Value Update
‣ Monte-Carlo Methods 

• Useful but leads a lot of back-propagation. 

• This increases messages in the network which we want to 
reduce 

‣ Temporal Difference(TD) Learning 

• Learning without waiting for episode to end 

• Special case TD(0) depends only on the value of current and next 
state-action pairs 

• Q(s, a) = Q(s, a) + α ⋅ (R + max(γ Q(s′�, a′�)) − Q(s, a))
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Exploration

‣ -greedy exploration gives stochastic convergence 
guarantees 

‣ Ensures that all feasible paths in the network will 
eventually be explored

ϵ



Run-time phase
‣ Run at every node when a packet arrives 

‣ Requires only current and next node Q-values 

• TD-Learning removes reward back propagation 

‣Decentralised approach as each node makes its own decisions
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‣ Run at every node when a packet arrives 

‣ Requires only current and next node Q-values 

• TD-Learning removes reward back propagation 

‣Decentralised approach as each node makes its own decisions

Algorithm 1 Node Logic (u)

1: for Every packet do
2: if u = source node i then
3: Du = DF // Initialise the deadline for each episode

4: �it = 0 // Initiliaze total delay for packet = 0

5: for each edge (u ! v) do
6: if cuv > Du then // Unsafe Edge

7: P (u|v) = 0

8: else if Q(u, v) = max(Q(u, a 2 A)) then
9: P (u|v) = (1� ✏)

10: else
11: P (u|v) = ✏/(size(F � 1))

12: Choose edge (u ! v) with P
13: Observe �uv
14: �it += �uv
15: Dv = Du � �uv
16: R = Environment Reward Function(v, �it)
17: Q(u, v) = Value iteration from Equation

18: if v = t then
19: DONE

1
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Reward Function

Algorithm 1 Environment Reward Function(v, �it)

1: Assigns the reward at the end of transmission
2: if v = t then
3: R = DF � �it
4: else
5: R = 0

1

‣ Reward assigned by the environment 

‣ At the end of every episode/packet transmission 

‣ Propagates to other nodes through TD(0)
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Evaluation

‣ Implemented using NetworkX[1] 

‣ Python graph generator package 

‣ Compare our algorithm to Rapid Routing[2] and classical RL

[2] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

[1] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network structure, dynamics, and function using NetworkX”

http://conference.scipy.org/proceedings/SciPy2008/paper_2/
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Experiment 1: No Variance.  δ = cT
xy

‣ No Variance in the typical transmission times  

‣ Paths taken by both Rapid Routing and Safe RL converge to the 
same 

‣ Average delays are slightly higher for Safe RL due to exploration
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Experiment 1: No Variance

Table 1: Optimal Path for Di↵erent Deadlines

DF Optimal Path Delays, Rapid Routing Average Delays (1000 episodes)

15 Infeasible - -

20 {i,x,t} 14 14

25 {i,x,y,t} 10 10.24

30 {i,x,y,t} 10 10.22

35 {i,x,z,t} 6 6.64

40 {i,x,z,t} 6 6.55

‣ No Variance in the typical transmission times  

‣ Paths taken by both Rapid Routing and Safe RL converge to the 
same 

‣ Average delays are slightly higher for Safe RL due to exploration
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Videos 1 and 2



‣ Tests the adaptability of our algorithm 
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• When =20, the only safe path is 
[i,x,t], results in higher tx times 

• RR doesn’t consider disturbance as 
its based on static tables. 

• One way to mitigate it is to redo the 
pre-processing/tables
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Experiment 3a: Truncated Normal Distribution
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Experiment 3b: Uniform Distribution
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Experiment 4: WC-Uniform Distribution.   0 < δ ≤ cW
xy
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Experiment 5: Large Networks
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Experiment 5: Computational time
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during network creation
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Conclusion
‣ Applied reinforcement learning to routing over real-time networks 

‣ Augmented state-space allows safe exploration 

‣ Constant adaptation to changes in typical transmission time 

‣ Compared to classical RL, our algorithm is robust and does not 
violate any deadlines 

‣ Compared to previous work, our algorithm 

• Adapts online to changes in typical transmission time 

• Is less computationally intensive
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Future Work

‣ Implement on a network emulator 

• Thank you Alex for pointers.  

‣ Investigate probability propagation through network 

‣ Is there anyway to guarantee safety if loops are present in 
the network?
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