

Off-Policy Reinforcement Learning for Adaptive Optimal Output Tracking of Unknown Linear Discrete-Time Systems

Ci Chen

2020. 09. 25

- **Background & Motivation:** Optimal output tracking
- **Problem Formulation:** Output regulation theory
- **Method:** Off-policy reinforcement learning for output-feedback-based optimal control
- **Simulation**

1. Background & Motivation

Challenge

How to design tracking control systems with satisfactory performance without exact model knowledge?

- Rapid response
- Stability/robustness/safety guarantee
- Optimality for reduced fuel consumption

Aeronautics

Power systems

Transportation

1. Background & Motivation

Optimal Control--The Linear Quadratic Regulator (LQR) if full system dynamics are available.

General goal

We want to find optimal control solutions

- a) Online in real-time
- b) Using adaptive control techniques
- c) Without knowing the full dynamics

Reinforcement learning (RL) turns out to be the key to this goal! **1. Background & Motivation**

Problem to be studied

How to achieve Optimal Output Tracking for DT systems via Output-Feedback-based Reinforcement learning?

Background & Motivation

Problem Formulation

2. Problem Formulation (From Tracking to Regulation)

Control design by the standard output regulation (full system dynamics)

2. Problem Formulation (From Tracking to Regulation)

To ensure the detectability (observability), we design

2. Problem Formulation

A tracking control design problem is now transformed into a regulation-based optimization problem.

Augmented system
(*)
$$\begin{cases}
e(k+1) = \underline{A}e(k) + \overline{B}u_e(k) \\
y_e(k) = \overline{C}e(k)
\end{cases}$$
Problem

$$\begin{cases}
\min \sum_{i=k}^{\infty} \left(y_e^T(i)Qy_e(i) + u_e^T(i)\overline{R}u_e(i)\right) \\
subject to (*)
\end{cases}$$

Question: How to use i/o data to learn the optimal controller that solves the optimization problem without exact model knowledge?

Problem Formulation

3. Method (State-Feedback Case)

Design the behavior policy
$$\begin{cases} \overline{u}(k) = -\overline{K}^0 r(k) + \xi(k) - T\overline{z}(k) \\ \overline{z}(k+1) = F\overline{z}(k) - Gy(k) + G\vartheta(k) \end{cases}$$

Policy-iteration-based Bellman equation solver in state-feedback form

$$r^{T}(k+1)P^{j+1}r(k+1) - r^{T}(k)P^{j+1}r(k)$$

= $-r^{T}(k)(\bar{Q} + (\bar{K}^{j})^{T}\bar{R}\bar{K}^{j})r(k) + \vartheta^{T}(k)\bar{G}^{T}P^{j+1}\bar{G}\vartheta(k)$
+ $(-\bar{K}^{j}r(k) + \bar{u}(k))^{T}\bar{B}^{T}P^{j+1}\bar{B}(\bar{K}^{j}r(k) + \bar{u}(k))$
+ $2\vartheta^{T}(k)\bar{G}^{T}P^{j+1}\bar{B}u(k) + 2r^{T}(k)\underline{A}^{T}P^{j+1}\bar{G}\vartheta(k)$
+ $2r^{T}(k)\underline{A}^{T}P^{j+1}\bar{B}(\bar{K}^{j}r(k) + \bar{u}(k)).$
 $r = [x^{T}, \bar{z}^{T}]^{T}$

unknown

We seek to reconstruct the state using input and output data.

3. Method (System State Reconstruction)

Reconstruct the state using input and output data.

$$\begin{split} \zeta_{\bar{u}}(k+1) &= (I_m \otimes A_{\zeta})\zeta_{\bar{u}}(k) + \bar{u}(k) \otimes b, \\ \zeta_y(k+1) &= (I_p \otimes A_{\zeta})\zeta_y(k) + y(k) \otimes b, \\ \zeta_{\vartheta}(k+1) &= (I_p \otimes A_{\zeta})\zeta_{\vartheta}(k) + \vartheta(k) \otimes b, \end{split} \qquad \bar{\zeta}^T = [\zeta_u^T, \zeta_y^T, \zeta_{\vartheta}^T]^T, \end{split}$$

where $b = [0, 0, ..., 0, 1]^T$ and A_{ζ} is a companion matrix¹

1. G. Tao, Adaptive control design and analysis. John Wiley & Sons, 2003

Theorem 1: If the matrix pair $(\underline{A}, \overline{B})$ is controllable and $(\underline{A}, \overline{C})$ is observable, then the system state satisfies

$$r = \bar{M}\bar{\zeta} + (\underline{A} - \bar{L}\bar{C})^k r(0)$$

where \overline{M} is a full row rank matrix and $\overline{\zeta}$ is a known vector. The re-expression error $r - \overline{M}\overline{\zeta}$ converges to zero asymptotically.

3. Method (System State Reconstruction)

Theorem 1: If the matrix pair
$$(\underline{A}, \overline{B})$$
 is controllable and
 $(\underline{A}, \overline{C})$ is observable, then the system state satisfies
 $r = \overline{M}\overline{\zeta} + (\underline{A} - \overline{L}\overline{C})^k r(0)$
where \overline{M} is a full row rank matrix and $\overline{\zeta}$ is a known vector. The
re-expression error $r - \overline{M}\overline{\zeta}$ converges to zero asymptotically.
Policy, iteration-based Bellman equation solver in state-feedback form
 $r^T(k+1)P^{j+1}r(k+1) - r^T(k)P^{j+1}r(k)$
 $= -r^T(k)(\overline{Q} + (\overline{K}^j)^T \overline{R}\overline{K}^j)r(k) + \vartheta^T(k)\overline{G}^T P^{j+1}\overline{G}\vartheta(k)$
 $+ (-\overline{K}^j r(k) + \overline{u}(k))^T \overline{B}^T P^{j+1}\overline{B}(\overline{K}^j r(k) + \overline{u}(k))$
 $+ 2\vartheta^T(k)\overline{G}^T P^{j+1}\overline{B}u(k) + 2r^T(k)\underline{A}^T P^{j+1}\overline{G}\vartheta(k)$
 $r = [x^T, \overline{z}^T]^T$
 $+ 2r^T(k)\underline{A}^T P^{j+1}\overline{B}(\overline{K}^j r(k) + \overline{u}(k)).$

3. Method (Output-Feedback Case) Solve the optimal control gain through output feedback

Collect the input-output data over $[k_i, k_{i+1}]$, i=0, ..., f $C_r = [\operatorname{vecv}(r(k_1)) - \operatorname{vecv}(r(k_0)), \cdots, \operatorname{vecv}(r(k_f)) - \operatorname{vecv}(r(k_{f-1}))]^T$ $\mathcal{D}_{\overline{k}^{j_r}} = [\operatorname{vecv}(\overline{k}^{j}r(k_0)), \operatorname{vecv}(\overline{k}^{j}r(k_1)), \cdots, \operatorname{vecv}(\overline{k}^{j}r(k_{f-1}))]^T$ $\mathcal{D}_{\overline{u}} = [\operatorname{vecv}(\overline{u}(k_0)), \operatorname{vecv}(\overline{u}(k_1)), \cdots, \operatorname{vecv}(\overline{u}(k_{f-1}))]^T$ $\mathcal{D}_r = [\operatorname{vecv}(r(k_0)), \operatorname{vecv}(r(k_1)), \cdots, \operatorname{vecv}(r(k_{f-1}))]^T$ $\mathcal{D}_g = [\operatorname{vecv}(g(k_0)), \operatorname{vecv}(g(k_1)), \cdots, \operatorname{vecv}(g(k_{f-1}))]^T$ $\mathcal{D}_{gr} = [g(k_0) \otimes r(k_0), g(k_1) \otimes r(k_1), \cdots, g(k_{f-1}) \otimes r(k_{f-1})]^T$ $\mathcal{D}_{rr} = [r(k_0) \otimes r(k_0), r(k_1) \otimes r(k_1), \cdots, r(k_{f-1}) \otimes r(k_{f-1})]^T$

13

3. Method (Learning From Input-Output Data) Solve the optimal control gain through output feedback

The optimal control gain $(\bar{R} + \bar{B}^T P^{j+1} \bar{B})^{-1} (\bar{M}^T \underline{A}^T P^{j+1} \bar{B})^T$ is uniquely learned from input-output data.

- **Background & Motivation**
- **Problem Formulation**

4. Simulation

F-16 aircraft dynamics after the discretization

Reference dynamics

	S =	$\left[\begin{array}{c} 0\\ -1 \end{array}\right]$		$\begin{bmatrix} 1\\ 0 \end{bmatrix},$	R	= [1	0]	
10 ¹⁰		0						$\bullet \ \hat{\bar{L}}_{P}^{j+1}$	$-\hat{\bar{L}}_{P}^{j}$
10 ⁵) — •			$-\overline{\overline{K}}_{o}^{J}$
10 ⁰							*	\ \ \	
10 ⁻⁵	-								*****
10 ⁰)			Iteratio	on Ste	eps		10 ¹	
(b) $\ \hat{\bar{L}}_{P}^{j+1} - \bar{\bar{L}}_{P}^{j}\ $ and $\ \hat{\bar{K}}_{o}^{j+1} - \bar{\bar{K}}_{o}^{j}\ $									

x(1) angle attack;x(3) elevator actuator;x(2) pitch rate;y = x(2) pitch rate.

The initial stabilizing control gain as					
$\bar{K}_{o}^{0} = \begin{bmatrix} 16.0669 \end{bmatrix}$	20.11	20.3783			
20.8936	3.93085	7.08518			
19.9149	10.5774	4.29378			
-0.31044	-8.03354	-18.0887			
-12.2209	-2.57785	$-0.414603\big]$			

The learned	optimal	control	gain	as
-------------	---------	---------	------	----

$\bar{K}_o^{10} = \left[\right]$	-3.14906	-1.06988	0.068666
	-0.161422	2.73117	-1.38856
	-2.63657	1.70597	1.54444
	0.842932	1.57443	2.10917
	-1.08647	-2.09949	-0.47113]

Fig. 3 Convergence of the learned control gain

4. Simulation

- **Background & Motivation**
- **Problem Formulation**

5. Conclusion

Adaptive Optimal Output Tracking for DT systems via Output-Feedback-Based Reinforcement Learning

- 1. We proposed an output regulation and off-policy RL-based controller to formulate adaptive optimal output tracking problem for DT systems.
- 2. We derived a verifiable rank condition to ensure the uniqueness of the optimal control gain learned from input-output data.
- **3.** We proposed a model-free pre-collection phase to supplement the off-policy learning for DT systems.

Thank you

