Nonlinear Forward-Backward Splitting with Projection Correction

Pontus Giselsson

This talk

• We consider monotone inclusion problems of the form

$$0 \in Bx + Dx$$

where

- B and D are maximally monotone operators
- *D* is Lipschitz continuous
- Will give new interpretation of forward-backward-forward splitting

$$\hat{x}_k := (\mathrm{Id} + \gamma B)^{-1} (\mathrm{Id} - \gamma D) x_k$$
$$x_{k+1} := \hat{x}_k - \gamma (D\hat{x}_k - Dx_k)$$

where

- first step is forward-backward step on \boldsymbol{B} and \boldsymbol{D}
- ${\ensuremath{\,\bullet\,}}$ second step is a correction step that needs extra evaluation of D

Proximal gradient method

• Consider convex optimization problems of the form

minimize f(x) + g(x)

where

- $f: \mathbb{R}^n \to \mathbb{R}$ is convex and smooth
- $g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is proper closed convex
- Since f finite-valued, this is equivalent to solving

$$0\in \partial g(x)+\nabla f(x)$$

where

- ∂g and ∇f are maximally monotone
- ∇f is Lipschitz continuous
- Proximal gradient method (forward-backward splitting)

$$x_{k+1} = (\mathrm{Id} + \gamma \partial g)^{-1} (\mathrm{Id} - \gamma \nabla f) x_k = \mathrm{prox}_{\gamma g} (x_k - \gamma \nabla f(x_k))$$

does not need correction, why?

Cocoercivity

Baillon-Haddad theorem

Let D be Lipschitz continuous and gradient of convex function. Then D is cocoercive.

• In general: β -Lipschitz continuity $\leftarrow \frac{1}{\beta}$ -cocoercivity

 $||Dx - Dy|| \le \beta ||x - y|| \quad \Leftarrow \quad \langle Dx - Dy, x - y \rangle \ge \frac{1}{\beta} ||Dx - Dy||^2$

Cauchy-Schwarz on cocoercivity scalar product gives Lipschitz

- There exist Lipschitz operators that are not cocoercive
- Need correction step in forward-backward if not cocoercive

Lipschitz but not cocoercive operators - Skew

Skew-symmetric operators

$$K = \begin{bmatrix} 0 & L^* \\ -L & 0 \end{bmatrix}$$

are Lipschitz but not coocericve since $\langle Kx - Ky, x - y \rangle = 0$

• Arise when solving primal dual formulations of $\min g(x) + f(Lx)$:

$$0 \in \partial g(x) + L^* \underbrace{\partial f(Lx)}_{\mu} \quad \Leftrightarrow \quad 0 \in \begin{bmatrix} \partial g(x) + L^* \mu \\ \partial f(Lx) - \mu \end{bmatrix}$$
$$\Leftrightarrow \quad 0 \in \underbrace{\begin{bmatrix} \partial g(x) \\ \partial f^*(\mu) \end{bmatrix}}_{B(x,\mu)} + \underbrace{\begin{bmatrix} L^* \mu \\ -Lx \end{bmatrix}}_{K(x,\mu)}$$

where K is skew, monotone, and Lipschitz, but not cocoercive • Solvable by forward-backward forward, but not forward-backward

Lipschitz not cocoercive - Min-max problems

Convex-concave min-max problems

$$\min_{x} \max_{\mu} (h(x,\mu) + f(x) - g^*(\mu))$$

where

- f is convex and h is convex w.r.t. x
- g^* is concave and h is concave w.r.t. μ
- h is differentiable and with Lipschitz gradient
- Optimality condition

$$0 \in \underbrace{\begin{bmatrix} \partial f(x) \\ \partial g^*(\mu) \end{bmatrix}}_{B(x,\mu)} + \underbrace{\begin{bmatrix} \nabla_x h(x,\mu) \\ -\nabla_\mu h(x,\mu) \end{bmatrix}}_{D(x,\mu)}$$

where D is monotone and Lipschitz, but not cocoercive

- Solvable by forward-backward forward, but not forward-backward
- Motivation from training of GANs, although not convex-concave

New interpretation of FBF

- FBF is special case of new algorithm called NOFOB
- NOFOB is a separate and project method:
 - "Create separating hyperplane and project onto it"
 - Separating hyperplane from nonlinear forward-backward map

Nonlinear Forward-Backward Splitting (NOFOB)

• Solves maximal monotone inclusion problems of the form

 $0 \in Ax + Cx,$

A is maximally monotone and C is $\frac{1}{\beta}\text{-}\mathsf{cocoercive}$ w.r.t. $\|\cdot\|_P$

• Proposed algorithm (NOFOB)

$$\hat{x}_k := (M_k + A)^{-1} (M_k - C) x_k$$

$$H_k := \{ z : \langle M_k x_k - M_k \hat{x}_k, z - \hat{x}_k \rangle \le \frac{\beta}{4} \| x_k - \hat{x}_k \|_P^2 \}$$

$$x_{k+1} := (1 - \theta_k) x_k + \theta_k \Pi_{H_k}^S (x_k)$$

where

- M_k is Lipschitz and strongly monotone (can be relaxed if C = 0)
- H_k is a halfspace that contains $\operatorname{zer}(A+C)$ but not x_k (strictly)
- $\Pi_{H_k}^S$ is projection onto H_k in metric $\|\cdot\|_S$
- $\theta_k \in [\epsilon, 2 \epsilon]$ is relaxation parameter
- $P \ {\rm and} \ S$ are linear self-adjoint positive definite operators
- First step requires one M_k application, H_k construction another

Convergence

- Consequences of separate and project principle:
 - $\|\cdot\|_{S}$ -distance to fixed-point set nonincreasing (Fejer monotone)
 - Projection step length converges strongly to 0: $x_{k+1} x_k \rightarrow 0$
- Convergence of algorithm if cuts are deep enough
- Weak convergence of method follows by standard arguments if

$$x_{k+1} - x_k \to 0 \implies T_{\text{FB}}^k x_k - x_k = \hat{x}_k - x_k \to 0$$

which holds under stated assumptions on M_k

Symmetry and linearity of M_k

- If M_k symmetric and linear (and the same for all k)
 - can avoid second application of M_k by letting $S = M_k$
 - reason: projection point $\Pi_{H_k}^S(x_k) = \hat{x}_k$ that is already known
 - projection is in algorithm, but already computed
- If M_k is not symmetric or not linear
 - algorithm without projection can diverge
 - need (e.g.) projection to guarantee convergence

Forward-Backward-Forward Splitting (FBF)

• Solves monotone inclusion problems of the form

$$0 \in Bx + Dx$$

where B + D is maximally monotone and D is L-Lipschitz • Algorithm:

$$\hat{x}_k := (\mathrm{Id} + \gamma B)^{-1} (\mathrm{Id} - \gamma D) x_k$$
$$x_{k+1} := \hat{x}_k - \gamma (D\hat{x}_k - Dx_k)$$

- Algorithm needs second application of D, at \hat{x}_k
- Will show special case of NOFOB with C = 0

Arriving at FBF from Resolvent Method (1/2)

• Nonlinear resolvent method first step:

$$\hat{x}_k := (M_k + A)^{-1} M_k x_k$$

• The trick: Let $M_k = \gamma^{-1} \mathrm{Id} - D$ and A = B + D, then

$$\hat{x}_k = (M_k + A)^{-1} M_k x_k = (\gamma^{-1} \mathrm{Id} - D + B + D)^{-1} (\gamma^{-1} \mathrm{Id} - D)$$

= $(\gamma^{-1} \mathrm{Id} + B)^{-1} (\gamma^{-1} \mathrm{Id} - D)$
= $(\mathrm{Id} + \gamma B)^{-1} (\mathrm{Id} - \gamma D)$

resolvent of B + D in M_k evaluated as forward-backward step:

$$(M_k + A)^{-1} \circ M_k = (\mathrm{Id} + \gamma B)^{-1} \circ (\mathrm{Id} - \gamma D)$$

Arriving at FBF from Resolvent Method (2/2)

• Nonlinear resolvent method

$$\hat{x}_k := (M_k + A)^{-1} M_k x_k$$

$$H_k := \{ z : \langle M_k x_k - M_k \hat{x}_k, z - \hat{x}_k \rangle \le 0 \}$$

$$x_{k+1} := (1 - \theta_k) x_k + \theta_k \Pi_{H_k}^S(x_k)$$

- Use in projection step:
 - Projection metric S = Id

• Relaxation parameter $\theta_k = \gamma \frac{\|M_k x_k - M_k \hat{x}_k\|_2^2}{\langle M_k x_k - M_k \hat{x}_k, x_k - \hat{x}_k \rangle}$ to get resulting algorithm (FBF):

$$\hat{x}_k := (\mathrm{Id} + \gamma B)^{-1} (\mathrm{Id} - \gamma D) x_k$$
$$x_{k+1} := \hat{x}_k - \gamma (D\hat{x}_k - Dx_k)$$

• If $\gamma \in (0, \frac{1}{L})$, relaxation parameter $\theta_k \in [\epsilon, 2 - \epsilon]$ but often small

A Long-step FBF

• We propose long-step FBF method (NOFOB with full projection)

$$\hat{x}_k := (\mathrm{Id} + \gamma B)^{-1} (\mathrm{Id} - \gamma D) x_k$$
$$\mu_k := \frac{\langle (\mathrm{Id} - \gamma D) x_k - (\mathrm{Id} - \gamma D) \hat{x}_k, x_k - \hat{x}_k \rangle}{\| (\mathrm{Id} - \gamma D) x_k - (\mathrm{Id} - \gamma D) \hat{x}_k \|^2}$$
$$x_{k+1} := x_k - \theta_k \mu_k ((\mathrm{Id} - \gamma D) x_k - (\mathrm{Id} - \gamma D) \hat{x}_k)$$

- Essentially same computational cost as FBF, longer steps
- Arbitrary relaxation parameter θ_k
- Convergence for $\gamma \in (0, \frac{1}{L})$ and $\theta_k \in (0, 2)$

Variations:

- If D linear skew adjoint, all $\gamma > 0$ OK (as in standard FBF)
- Can make all step-sizes γ depend on iteration

Summary

- We have proposed nonlinear forward-backward splitting (NOFOB)
- Shown that forward-backward forward is special case
- NOFOB has many more special cases:
 - Forward-backward splitting
 - Forward-backward-half-forward splitting
 - Chambolle-Pock
 - Vu-Condat
 - Douglas-Rachford, ADMM, and proximal ADMM
 - Synchronous projective splitting
 - Asymmetric forward-backward adjoint splitting (AFBA)
- NOFOB also gives rise to novel four operator splitting method

Thank you

Preprint available on arXiv:1908.07449