Friday Seminar

Fredrik Bagge Carlson

Dept Automatic Control, Lund University, Sweden

What do I do?

FlexiFab Friction stir welding, with robots.ABB extRosetta Assorted research, with robots.SARAFun Teaching assembly tasks, with robots.

FlexiFab

Flexible fabrication of lightweight aluminum structures

- Develop a closed loop control system to follow the weld path.
- Integrate sensors and robot control system.

Video

Figure: FSW at TWI in Sheffield

Figure: FSW at the department

Goal and challenges

Goal To accurately track the weld seam

Challenges

- Kinematic uncertainties
- Deflections due to high process force
- Inaccuracies in work cell

Feedback 2D laser sensor

Seam

Figure: Validation of pose estimates

Figure: Validation of pose estimates

Figure: Validation of pose estimates

Joint types

Development of new logging system and integration with ABB's EGM interface is a big part of Flexifab

extRosetta

Assorted research sponsored by ABB.

Andreas Stolt Lead Through and sensor-less force estimationMe Position and temperature dependent friction estimation

Position dependent friction estimation

- Friction in FRIDA's joints varies (a lot) with position.
- Due in large to internal cabling.

How to model position dependence?

Classical model

$$F_f = k_c \operatorname{sign}\left(v\right) + k_v v$$

Model the residual with an universal function approximator RBF model

$$F_f = k_c \operatorname{sign} (v) + k_v v + k_\kappa \phi(p)$$
$$\phi : \mathbb{R} \to \mathbb{R}^n$$

Estimated Friction

Figure: Estimated Coulomb friction level

Figure: Estimated Coulomb friction level

Double surface Single surface

Temperature modifies friction, but we have no thermometer!

Temperature increase is due to friction.

Velocity
$$\rightarrow$$
 Friction \overrightarrow{W} Temperature

How about estimating the entire orange part together? f(T) $Velocity \rightarrow Friction W$ Temperature

Input Power due to friction WOutput Modification of friction E

Results

Figure: Model fit to experimental data. Left plot shows an early stage of the * src, experiment when the joint is cold. Right plot shows a later stage, when the plot shows a later stage of the shows a later stage of the shows a later stage.

Results

Figure: Performance indicators for the identified models, YuMi.

Friction modeling Make use of model in sensorless lead-through. **SARAFun** New EU project on assembly with robots.

