Causalization for Dynamic Optimization

Fredrik Magnusson

Department of Automatic Control Faculty of Engineering Lund University, Sweden

May 8, 2015

Outline

3 Causalization for Dynamic Optimization

Fredrik Magnusson: Causalization for Dynamic Optimization 1/30

Outline

2 Causalization

Causalization for Dynamic Optimization

2/30 Fredrik Magnusson: Causalization for Dynamic Optimization

- Started February 2012
- Working on open-source framework for large-scale dynamic optimization
- Looking for ways to make dynamic optimization algorithms more
 - efficient
 - reliable
 - accessible

- Optimization problems with differential equations as constraints
- Applications include
 - optimal control (open or closed loop)
 - parameter estimation or optimization
 - state estimation (moving horizon estimation)
 - experiment design

JModelica.org

- Anders Holmqvist, Postdoc at Chemical Engineering, Lund
 - Previously identification and control of atomic layer deposition reactors (for e.g. construction of semiconductors and solar cells)
 - Currently optimal control of chromatographic processes (separation of chemical compounds, e.g. for pharmaceutics)
- Roel De Coninck, PhD Student at KU Leuven and 3E, Belgium
 - Identification, state estimation, and control for heating in buildings
- Karl Berntorp/Björn Olofsson, MERL/Control, Boston/Lund
 - Vehicle maneuvers
- Kilian Link et. al, Siemens AG, Erlangen, Germany
 - MPC for power plants
- Too many more...

Optimal control

 $\phi(t_f, x(t_f)) + \int_0^{t_f} L(x(t), u(t)) \,\mathrm{d}t,$ minimize with respect to $t_f, x, u,$ $\dot{x} = f(x(t), u(t)),$ subject to $x(0) = x_0$ $g_e(t, x(t), u(t)) = 0,$ $q_i(t, x(t), u(t)) < 0,$ $\psi(x(t_f)) = 0,$ $\forall t \in [0, t_f].$

Nonlinear dynamics and state constraints \implies probably need numerical methods

Differential-algebraic equation (DAE) instead of explicit ODE:

$$\begin{array}{ll} \text{minimize} & \phi(t_f, x(t_f), \textbf{y}(t_f)) + \int_0^{t_f} L(x(t), \textbf{y}(t), u(t)) \, \mathrm{d}t, \\ \text{with respect to} & t_f, x, y, u, \\ \text{subject to} & F(\dot{x}(t), x(t), y(t), u(t))) = 0, \\ & x(0) = x_0, \\ & g_e(t, x(t), \textbf{y}(t), u(t)) = 0, \\ & g_i(t, x(t), \textbf{y}(t), u(t)) \leq 0, \\ & \psi(x(t_f), \textbf{y}(t_f)) = 0, \\ & \forall t \in [0, t_f]. \end{array}$$

DAEs are a more useful framework than ODEs when either

- System variables are coupled by nontrivial algebraic (static) relations, common in e.g. multibody mechanics, electrical circuits, and chemical processes
- Component-based modeling; component connections usually give rise to algebraic equations

One of the most common numerical methods for dynamic optimization is direct collocation. Main idea is to approximate system trajectories by polynomials:

- Divide the time horizon $[t_0, t_f]$ into a finite number of elements
- Approximate the time-variant variables in each element by a polynomial
- Force this polynomial to satisfy all the constraints in a few (or many) points

• The result is a nonlinear program (NLP) on the form

 $\begin{array}{ll} \text{minimize} & f(x),\\ \text{with respect to} & x \in \mathbb{R}^n,\\ \text{subject to} & x_L \leq x \leq x_U,\\ & g(x) = 0,\\ & h(x) \leq 0. \end{array}$

- NLP solution approximates the solution to the original dynamic optimization problem
- Nonlinear dynamics \implies nonlinear equality constraints g(x) = 0 \implies nonconvex problem \implies nonglobal optimization

Outline

Dynamic Optimization

3

Causalization for Dynamic Optimization

11/30 Fredrik Magnusson: Causalization for Dynamic Optimization

- DAE systems can be simulated (numerically integrated) with specialized DAE solvers
- More common to transform the DAE to an ODE and apply ODE solvers
- This transformation consists of many steps, most notably
 - index reduction, reducing the DAE to index 1 (DAE has a unique solution for x and y)
 - causalization, eliminating or "hiding" all the algebraic variables

Example

- To transform $F(\dot{x},x,y)=0$ into $\dot{x}=f(x),$ we want to solve the equations for $z=(\dot{x},y)$
- We first match each variable to its own equation (possible iff DAE is index 1)

Incidences of \dot{x} and y in DAE residuals

Matching found by applying Hopcroft-Karp on graph

- Now we know which equation to solve for which variable
- Next step is to actually solve
- Rather than solve all equations simultaneously (like a DAE solver), permute the system to block-lower triangular (BLT) form
- Sequential solution of many, but small, equation systems
- Permutations found by applying Tarjan's algorithm on a similar graph to find strongly connected components

BLT incidence

- If block equations depend nonlinearly unknowns (*x* and *y*), then Newton's method
- Then closed-form expression for ODE does not exist, but computationally behaves like an ODE (computes \dot{x} given x)
- If block contains more than one equation/variable, they need to be solved simultaneously: Algebraic loop (Newton's method if nonlinear, numerical factorization if linear)
- Nonlinear and nonscalar blocks are surprisingly uncommon, even for large, nonlinear models!

The result

$$U_0 \leftarrow \sin(t),$$

$$i_2 \leftarrow U_0/3,$$

$$i_3 \leftarrow U_0/3,$$

$$u_2 \leftarrow U_0/3,$$

$$u_1 \leftarrow 2U_0/3,$$

$$i_1 \leftarrow 2U_0/3,$$

$$i_0 \leftarrow i_1 + i_L,$$

$$u_L \leftarrow u_1 + u_2,$$

$$\frac{\mathrm{d}}{\mathrm{d}t}i_L \leftarrow u_L.$$

Or simply:
$$\frac{\mathrm{d}}{\mathrm{d}t}i_L = \sin(t)$$

20/30 Fredrik Magnusson: Causalization for Dynamic Optimization

Outline

Causalization for Dynamic Optimization

Fredrik Magnusson: Causalization for Dynamic Optimization 21/30

- Dynamic optimization conventionally done by exposing the full DAE to the numerical algorithm
- Let us causalize the DAE before applying e.g. direct collocation!

- Goal is to eliminate algebraic variables to reduce number of variables; not to get an ODE
- Instead of nested Newton iterations for nonlinear blocks, keep them and expose to collocation and NLP solver
- May also want to not eliminate variables occurring in objective or path constraints

Problem		n_x	n_y	Sol [s]
Vehicle	DAE	13	27	3.7
	Causal	13	4	2.0
CCPP	DAE	10	123	2.3
	Causal	10	1	∞
Dist.	DAE	125	1000	12
	Causal	125	2	94

CCPP:

- One BLT blocks is linear, size 2, 2 state derivatives
- First state is a pressure, order of magnitude 10^8
- Second state is a volume fraction, order of magnitude 10^{-6}
- Block coefficient matrix numerically singular
- Proper solution: Scaling
- Temporary solution: Do not solve this block; instead leave it for the collocation and NLP solver

Distillation column:

- Solving a block and using the solution in succeeding equations changes sparsity structure
- The full system typically becomes much smaller but denser
- No problem for typical simulation purposes; sparsity not exploited
- For optimization, trade-off between sparsity and size
- Proper solution: ?
- Envisioned solution: Analyze equation sparsity and only eliminate variables which do not majorly impact it

Problem		n_x	n_y	Sol	KKT nnz	KKT nnz/row
Vehicle	DAE	13	27	3.7	9.4e4	4.7
	Causal	13	4	2.0	7.8e4	5.9
CCPP	DAE	10	123	2.3	1.7e5	3.6
	Causal	10	1	0.9	4.6e4	6.0
Dist.	DAE	125	1000	12	7.7e5	4.9
	Causal	125	2	94	1.3e6	35.9

Other benefits:

- Memory
- More consistent convergence
- More robust convergence (empirically)

Causalization for Dynamic Optimization:

- Faster and more robust convergence (if done right)
- Need to work on conditioning already during BLT stages
- Probably need to work sparsity preservation
- Future work: Nested Newton for nonlinear blocks, yay or nay?

The end

Thank you for listening!