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Me

Started February 2012

Working on open-source framework for large-scale dynamic
optimization

Looking for ways to make dynamic optimization algorithms more

efficient

reliable

accessible
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Dynamic optimization

Optimization problems with differential equations as constraints

Applications include

optimal control (open or closed loop)

parameter estimation or optimization

state estimation (moving horizon estimation)

experiment design
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JModelica.org
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Application-oriented collaborations

Anders Holmqvist, Postdoc at Chemical Engineering, Lund

Previously identification and control of atomic layer deposition
reactors (for e.g. construction of semiconductors and solar cells)

Currently optimal control of chromatographic processes
(separation of chemical compounds, e.g. for pharmaceutics)

Roel De Coninck, PhD Student at KU Leuven and 3E, Belgium

Identification, state estimation, and control for heating in buildings

Karl Berntorp/Björn Olofsson, MERL/Control, Boston/Lund

Vehicle maneuvers

Kilian Link et. al, Siemens AG, Erlangen, Germany

MPC for power plants

Too many more...
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Optimal control

minimize φ(tf ,x(tf ))+
∫ tf

0
L(x(t),u(t))dt,

with respect to tf ,x,u,

subject to ẋ= f(x(t),u(t)),
x(0) = x0,

ge(t,x(t),u(t)) = 0,
gi(t,x(t),u(t))≤ 0,
ψ(x(tf )) = 0,
∀t ∈ [0, tf ].

Nonlinear dynamics and state constraints =⇒ probably need
numerical methods
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Optimal control with DAE

Differential-algebraic equation (DAE) instead of explicit ODE:

minimize φ(tf ,x(tf ),y(tf ))+
∫ tf

0
L(x(t),y(t),u(t))dt,

with respect to tf ,x,y,u,

subject to F (ẋ(t),x(t),y(t),u(t))) = 0,
x(0) = x0,

ge(t,x(t),y(t),u(t)) = 0,
gi(t,x(t),y(t),u(t))≤ 0,
ψ(x(tf ),y(tf )) = 0,
∀t ∈ [0, tf ].
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Why DAE?

DAEs are a more useful framework than ODEs when either

System variables are coupled by nontrivial algebraic (static)
relations, common in e.g. multibody mechanics, electrical circuits,
and chemical processes

Component-based modeling; component connections usually
give rise to algebraic equations
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Collocation methods

One of the most common numerical methods for dynamic optimization
is direct collocation. Main idea is to approximate system trajectories by
polynomials:

Divide the time horizon [t0, tf ] into a finite number of elements

Approximate the time-variant variables in each element by a
polynomial

Force this polynomial to satisfy all the constraints in a few (or
many) points
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Nonlinear program

The result is a nonlinear program (NLP) on the form

minimize f(x),
with respect to x ∈ Rn,

subject to xL ≤ x≤ xU ,

g(x) = 0,
h(x)≤ 0.

NLP solution approximates the solution to the original dynamic
optimization problem

Nonlinear dynamics =⇒ nonlinear equality constraints g(x) = 0
=⇒ nonconvex problem =⇒ nonglobal optimization
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DAE simulation

DAE systems can be simulated (numerically integrated) with
specialized DAE solvers

More common to transform the DAE to an ODE and apply ODE
solvers

This transformation consists of many steps, most notably

index reduction, reducing the DAE to index 1 (DAE has a unique
solution for ẋ and y)

causalization, eliminating or “hiding” all the algebraic variables
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Example

U0 = sin(t)
u1 =R1 · i1
u2 =R2 · i2
u3 =R3 · i3

uL = L · d
dt iL

U0 = u1 +u3

uL = u1 +u2

u3 = u2

i0 = i1 + iL

i1 = i2 + i3
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Matching

To transform F (ẋ,x,y) = 0 into ẋ= f(x), we want to solve the
equations for z = (ẋ,y)

We first match each variable to its own equation (possible iff DAE
is index 1)
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Incidence matrix and graph

Incidences of ẋ and y in DAE residuals
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Incidence matrix and graph after matching

Matching found by applying Hopcroft-Karp on graph
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BLT

Now we know which equation to solve for which variable

Next step is to actually solve

Rather than solve all equations simultaneously (like a DAE
solver), permute the system to block-lower triangular (BLT) form

Sequential solution of many, but small, equation systems

Permutations found by applying Tarjan’s algorithm on a similar
graph to find strongly connected components

17/30 Fredrik Magnusson: Causalization for Dynamic Optimization



BLT incidence
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Solving blocks

If block equations depend nonlinearly unknowns (ẋ and y), then
Newton’s method

Then closed-form expression for ODE does not exist, but
computationally behaves like an ODE (computes ẋ given x)

If block contains more than one equation/variable, they need to
be solved simultaneously: Algebraic loop (Newton’s method if
nonlinear, numerical factorization if linear)

Nonlinear and nonscalar blocks are surprisingly uncommon, even
for large, nonlinear models!
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The result

U0← sin(t),
i2← U0/3,
i3← U0/3,
u2← U0/3,
u1← 2U0/3,
i1← 2U0/3,
i0← i1 + iL,

uL← u1 +u2,

d
dt iL← uL.

Or simply: d
dt iL = sin(t)
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Causalization for dynamic optimization

Dynamic optimization conventionally done by exposing the full
DAE to the numerical algorithm

Let us causalize the DAE before applying e.g. direct collocation!
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Initial considerations

Goal is to eliminate algebraic variables to reduce number of
variables; not to get an ODE

Instead of nested Newton iterations for nonlinear blocks, keep
them and expose to collocation and NLP solver

May also want to not eliminate variables occurring in objective or
path constraints
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First results

Problem nx ny Sol [s]

Vehicle
DAE 13 27 3.7
Causal 13 4 2.0

CCPP
DAE 10 123 2.3
Causal 10 1 ∞

Dist.
DAE 125 1000 12
Causal 125 2 94
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What went wrong?

CCPP:

One BLT blocks is linear, size 2, 2 state derivatives

First state is a pressure, order of magnitude 108

Second state is a volume fraction, order of magnitude 10−6

Block coefficient matrix numerically singular

Proper solution: Scaling

Temporary solution: Do not solve this block; instead leave it for
the collocation and NLP solver
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What went wrong?

Distillation column:

Solving a block and using the solution in succeeding equations
changes sparsity structure

The full system typically becomes much smaller but denser

No problem for typical simulation purposes; sparsity not exploited

For optimization, trade-off between sparsity and size

Proper solution: ?

Envisioned solution: Analyze equation sparsity and only eliminate
variables which do not majorly impact it

26/30 Fredrik Magnusson: Causalization for Dynamic Optimization



Results

Problem nx ny Sol KKT nnz KKT nnz/row

Vehicle
DAE 13 27 3.7 9.4e4 4.7
Causal 13 4 2.0 7.8e4 5.9

CCPP
DAE 10 123 2.3 1.7e5 3.6
Causal 10 1 0.9 4.6e4 6.0

Dist.
DAE 125 1000 12 7.7e5 4.9
Causal 125 2 94 1.3e6 35.9
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Not just speed

Other benefits:

Memory

More consistent convergence

More robust convergence (empirically)
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Conclusion

Causalization for Dynamic Optimization:

Faster and more robust convergence (if done right)

Need to work on conditioning already during BLT stages

Probably need to work sparsity preservation

Future work: Nested Newton for nonlinear blocks, yay or nay?
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The end

Thank you for listening!
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