
Symbolic Elimination Techniques for
Dynamic Optimization

Fredrik Magnusson

Department of Automatic Control
Faculty of Engineering

Lund University, Sweden

April 1, 2016



Outline

1 Overview

2 Tearing

3 Results

1/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Outline

1 Overview

2 Tearing

3 Results

2/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Me

Started February 2012

Working on JModelica.org: Open-source framework for
large-scale dynamic optimization

Looking for ways to make dynamic optimization algorithms more

efficient

reliable

accessible

3/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Dynamic optimization

Optimization problems with differential equations as constraints

Applications include

optimal control (open or closed loop)

parameter estimation or optimization

state estimation (moving horizon estimation)

experiment design

4/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



JModelica.org

5/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Optimal control

minimize φ(tf ,x(tf )) +
∫ tf

0
L(x(t),u(t))dt,

with respect to tf ,x,u,

subject to ẋ= f(x(t),u(t)),
x(0) = x0,

gi(t,x(t),u(t))≤ 0,
ψ(x(tf )) = 0,
∀t ∈ [0, tf ].

6/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Optimal control with DAE

Differential-algebraic equation (DAE) instead of explicit ODE:

minimize φ(tf ,x(tf ),y(tf )) +
∫ tf

0
L(x(t),y(t),u(t))dt,

with respect to tf ,x,y,u,

subject to F (ẋ(t),x(t),y(t),u(t))) = 0,
x(0) = x0,

gi(t,x(t),y(t),u(t))≤ 0,
ψ(x(tf ),y(tf )) = 0,
∀t ∈ [0, tf ].

6/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Simulation of DAEs

DAE systems can be simulated with specialized DAE solvers

Common to instead transform (reduce) the DAE to an ODE and
apply ODE solvers

These transformations have many benefits, but a few drawbacks

7/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Example

DAE

U0 = sin(t)
u1 =R1 · i1
u2 =R2 · i2
u3 =R3 · i3

uL = L · d
dt iL

U0 = u1 +u3

uL = u1 +u2

u3 = u2

i0 = i1 + iL

i1 = i2 + i3

ODE

d
dt iL = sin(t)

L

8/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Transformation techniques

Going from DAE to ODE in general involves many steps:

1. Alias elimination Get rid of equations and corresponding
variables of the form x±y = 0

2. Index reduction Perform index reduction until DAE is
index 1 (dummy derivatives)

3. Matching Match variables and equations (Hopcroft-Karp)
4. BLT Transform the system to block-lower triangular

(BLT) form with blocks of minimal size (Tarjan)
5. Tearing Tear algebraic loops
6. Solve loops Solve algebraic loops (Newton or LU)

Steps 1 and 5 are optional and done for performance.

9/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



BLT example

The block-lower triangular (BLT) transformation is central. Example:

u0-sin(time)

u1-i1

u2-i2

u3-i3

uL-der(iL)

u0-(u1+u3)

uL-(u1+u2)

u2-u3

i0-(i1+iL)

i1-(i2+i3)

de
r(

iL
)

u0 u1u2 u3 uLi0i1i2 i3

Allows state derivatives ẋ and algebraic variables y to be solved
for sequentially (in terms of state x and input u), resulting in ODE

Non-scalar and/or nonlinear blocks require numerical treatment
10/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Causalization for dynamic optimization

DAE-constrained optimization traditionally done using full DAE

Research idea: Utilize some of the transformation techniques for
DAE simulation for optimization

For simulation, goal is to get equivalent ODE

My goal is instead to get the equivalent (reduced) DAE that is
most suitable for numerical optimization

11/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Elimination techniques

1. Alias elimination Get rid of equations and corresponding
variables of the form x±y = 0

2. Index reduction Perform index reduction until DAE is
index 1 (dummy derivatives)

3. Matching Match variables and equations (Hopcroft-Karp)
4. BLT Transform the system to block-lower triangular

(BLT) form with blocks of minimal size (Tarjan)
5. Tearing Tear algebraic loops
6. Solve loops Solve algebraic loops (Newton or LU)
7. Sparsity preservation Undo some parts of steps 4 and 5

to preserve sparsity

12/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Outline

1 Overview

2 Tearing

3 Results

13/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Linear tearing

Used to improve efficiency when solving Āx= b when Ā is
sparse but without significant structure

Permute Ā to get [
A B
C D

][
x1
x2

]
=
[
b1
b2

]

such that A is easy to invert and D is small

Solution is then

x2 =
(
D−CA−1B

)−1(
b2−CA−1b1

)
x1 =A−1

(
b1−B

(
D−CA−1B

)−1(
b2−CA−1b1

))

D−CA−1B is the Schur complement of block A
14/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Linear tearing in BLT

In the BLT form, we use linear tearing for linear, non-scalar blocks

Make A lower triangular (invert by forward substitution)

Terminology:

Causalized variables x1 ∈ Rnc

Tearing variables x2 ∈ Rnt

Causalized equations Ax1 +Bx2 = b1 ∈ Rnc

Tearing residuals Cx1 +Dx2 = b2 ∈ Rnt

Inverting Ā has cost O((nc +nt)3)

Using Schur complement when A is lower triangular, cost is
instead O(n2

cnt +ncn
2
t +n3

t )

Got rid of O(n3
c) =⇒ we want few tearing variables

15/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Tearing example

BLT without tearing

u0-sin(time)

u1-i1

u2-i2

u3-i3

uL-der(iL)

u0-(u1+u3)

uL-(u1+u2)

u2-u3

i0-(i1+iL)

i1-(i2+i3)

de
r(

iL
)

u0 u1u2 u3 uLi0i1i2 i3
BLT with tearing

u0-sin(time)

u1-i1

u2-i2

u3-i3

uL-der(iL)

u0-(u1+u3)

uL-(u1+u2)

u2-u3
i0-(i1+iL)

i1-(i2+i3)

de
r(

iL
)

u0 u1 u2u3 uLi0i1 i2 i3

16/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Selecting tearing variables and residuals

Finding a minimal set of tearing variables and residuals such that
A is lower triangular is NP-hard

However, some choices of tearing variables/residuals will cause
ill-conditioned Schur complement!

So even if it were tractable to minimize nt, would often be bad

Selection either by heuristic algorithms, or manually by experts

The automatic tearing in Dymola is a trade secret and one of the
major reasons of its success

17/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Nonlinear tearing

For nonlinear systems F (x) = 0, the main idea is the same

Tear to create partition

x1 x2



F1

1 0 · · · 0 ∗ · · · ∗
∗ 1 · · · 0 ∗ · · · ∗
...

...
. . . 0

...
. . .

...
∗ ∗ ∗ 1 ∗ · · · ∗

F2

∗ ∗ · · · ∗ ∗ · · · ∗
...

...
. . .

...
...

. . .
...

∗ ∗ · · · ∗ ∗ · · · ∗

,

where F1 is lower triangular and constant along diagonal

F1 nonlinear w.r.t. x1, but easy to invert by forward substitution
18/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Skipping algebraic loops

When transforming all the way to an ODE, we need to
numerically solve the tearing residuals

LU decomposition for linear blocks, Newton for nonlinear blocks

The resulting ODE is thus not on closed form, and takes a long
time to evaluate the right-hand side of

Simply leave the tearing residuals, yielding a smaller DAE with
cheap residuals

Consequently no point in solving for the state derivatives =⇒
always choose all state derivatives as tearing variables

19/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Sparsity preservation

Resulting DAE is much smaller, but usually much denser

Sometimes the resulting density is crippling for optimization

Should thus also consider sparsity when tearing

As far as I know, this is previously unexplored/unpublished
territory for dynamic systems (even for simulation)

Nice ideas from dynamic pivot selection in direct methods for
sparse matrices (Markowitz criterion and local minimum fill-in)

20/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



A real example

A real BLT form where tearing is important

21/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Outline

1 Overview

2 Tearing

3 Results

22/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Old Results

Results from 1 year ago without tearing and sparsity preservation

Problem nx ny Time [s]

ST-WF
Full 13 27 3.7
Reduced 13 4 2.0

CCPP
Full 10 123 2.3
Reduced 10 1 0.9

Dist. Col.
Full 125 1000 12
Reduced 125 2 94

All of these problems lack algebraic loops =⇒ no use for tearing. But
maybe sparsity preservation helps!

23/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



New results

Some new problems to demonstrate effects of tearing

Problem nx ny Time [s]

Dist. Col.
Full 125 1000 12
Reduced 125 2 63 94 4

Fourbar1
Full 2 452 37
Reduced 2 46 2

HRSG
Full 18 75 8.4
Reduced 18 14 3.6

Dbl. Pend.
Full 4 124 ∞
Reduced 4 7 3.0

24/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Conclusion

Elimination techniques for dynamic optimization:

Eliminate algebraic variables by identifying BLT structure and tear
non-scalar blocks

Keep some choice algebraic variables to preserve sparsity

Employing these techniques reduces solution time by a factor
between 2 and∞

I have yet to encounter a problem where a suitable combination
of these ideas do more harm than good

No other dynamic optimization software utilizes these techniques

25/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



The end

Thank you for listening!

The End

26/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization


	Overview
	Tearing
	Results

