
Fixed-Point Interpretations of Large-Scale
Convex Optimization Algorithms

Pontus Giselsson

1

Algorithm types and problem dimensions

Problem dimension Algorithm type

small to medium scale
(up to 1’000 variables)

Second-order methods
(Newton’s method, interior point)

large-scale
(up to 100’000 variables)

First-order methods

huge-scale
(more than 100’000 variables)

Stochastic, coordinate,
parallel asynchronous
first-order methods

In data rich fields, problems usually large to huge scale

2

Large-and huge scale algorithms

Will present unified view of:

• Projected gradient methods

• Proximal gradient methods

• Forward-backward splitting

• Douglas-Rachford splitting

• The alternating direction method of multipliers

• SAGA

• Finito/MISO

• SVRG

• Block-coordinate (proximal) gradient descent

• Block-coordinate consensus optimization

• (Three operator splitting methods)

• (Chambolle-Pock and Primal-dual methods)

3

First-order method building blocks

• (Sub-)gradients:

∇f(x) =


∂f
∂x1

...
∂f
∂xn


• Projections onto a sets C:

ΠC(z) = argmin
x

(‖x− z‖2 : x ∈ C)

• Proximal operators:

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖

2
2)

where γ > 0 is a parameter.

4

Prox is generalization of projection

• Introduce the indicator function of a set C

ιC(x) :=

{
0 if x ∈ C
∞ otherwise

(this is an extended valued function, i.e., ιC : Rn → R ∪ {∞})
• Then

ΠC(z) = argmin
x

(‖x− z‖2 : x ∈ C)

= argmin
x

(1
2‖x− z‖

2
2 : x ∈ C)

= argmin
x

(1
2‖x− z‖

2
2 + ιC(x))

= proxιC (z)

(projection onto C equals prox of indicator function of C)

5

Prox as resolvent

• The proximal operator satisfies

proxγg = (I + γ∂g)−1

where
• ∂g is the subdifferential operator
• (·)−1 is the inverse operator
• (I + γ∂g)−1 is called the resolvent

• Reason: optimality condition for the prox-computation:

x = proxγg(z) ⇔
x = argmin

x
{g(x) + 1

2γ ‖x− z‖
2} ⇔

0 ∈ γ∂g(x) + x− z ⇔
z ∈ (I + γ∂g)x ⇔
x = (I + γ∂g)−1z

6

Problem formulations

• Most algorithms solve problems of the form

minimize f(x) + g(x)

where f, g may be extended-valued: f, g : Rn → R ∪ {∞}
• Models e.g., constrained problems through

minimize f(x) + ιC(x)

where ιC is indicator function for set C

7

Consensus formulation

• What if we want to solve problems of the form

minimize 1
n

n∑
i=1

fi(x)

• One approach is to use consensus formulation:

minimize 1
n

n∑
i=1

fi(xi)︸ ︷︷ ︸
f(x)

+ ιC(x1, . . . , xn)︸ ︷︷ ︸
g(x)

with individual xi for each fi and a consensus constraint

C := {(x1, . . . , xn) : x1 = · · · = xn}

• Problem reduces to two function problem from before

• (Also called divide and concur)

8

Algorithms – An abstract view

• Most algorithms translate problem to fixed-point problem:

find x? such that Tx? = x?

where T is referred to as fixed-point operator (mapping)

• Fixed-points of T have close relationship to solution of problem

• Most algorithms are based on one of the following:
• The forward-backward map
• The Douglas-Rachford map

9

The forward-backward map

• Assume ∇f is Lipschitz and f is convex, g is convex, then (CQ)

x ∈ argmin{f(x) + g(x)} ⇔ 0 ∈ ∇f(x) + ∂g(x)

⇔ −γ∇f(x) ∈ γ∂g(x)

⇔ (I − γ∇f)x ∈ (I + γ∂g)x

⇔ (I + γ∂g)−1(I − γ∇f)x 3 x
⇔ proxγg(I − γ∇f)x = x

• The map proxγg(I − γ∇f) is the FB map

• Its fixed-points coincide with solutions to optimization problem

• Reverse order gives backward-forward operator (I − γ∇f)proxγg:

Argmin{f(x) + g(x)} = proxγg
(
Fix

(
(I − γ∇f)proxγg

))
where FixT = {x : x = Tx}

10

The Douglas-Rachford map

• Let Rγf = 2proxγf − I be the reflector or reflected resolvent

• It can be shown that

Argmin
x
{f(x) + g(x)} = proxγg(FixRγfRγg)

• The composition of reflected resolvents RγfRγg is DR map

• Fixed-point solves optimization problem after prox-step

11

Why these mappings?

• They have the favorable property of being nonexpansive

• Forward-backward operator
• Assume f, g convex, ∇f L-Lipschitz, and γ ∈ (0, 2

L
)

• Then proxγ(I − γ∇f) is nonexpansive

• Douglas-Rachford operator
• Assume f, g convex and γ ∈ (0,∞)
• Then RγfRγg is nonexpansive

• Reason, building blocks have similar favorable properties

12

Nonexpansive

• The operators T are nonexpansive: for all x, y:

‖Tx− Ty‖ ≤ ‖x− y‖

• Let y = x̄ where x̄ = T x̄ is a fixed-point to T , then

‖Tx− x̄‖ ≤ ‖x− x̄‖

• 2D graphical representation

x̄ x

Tx in gray area (distance to fixed-point not increased)

13

Iterating T

• The iteration

xk+1 = Txk

is not guaranteed to converge to a fixed-point

• Example: T is a rotation

x̄ x0

x1
x2

x3
x4x5

x6

x7

x8

x9

• Why is nonexpansiveness a useful property?

14

The role of α-averaging

• We consider averaged iteration of the nonexpansive mapping T :

xk+1 = (1− α)xk + αTxk

where α ∈ (0, 1)
• 2D example on where xk+1 can end up for different α

(x̄ ∈ FixT):

x̄ xk

– α = 1 – α = 0.75 – α = 0.5 – α = 0.25

• Distance to fixed-points decreased if α ∈ (0, 1) and Txk 6= xk

15

Property of α-averaged operator

• Let S = (1− α)I + αT and xk+1 = Sxk, then it can be shown

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − β‖xk − Sxk‖2

for all z ∈ FixS = FixT and some β > 0

• ‖xk − z‖2 is Lyapunov function and ‖xk − Sxk‖ gives decrease

• Consequence:
• (‖xk − z‖)k≥0 converges for all z ∈ FixT
• ‖xk − Sxk‖ = α‖xk − Txk‖ → 0 as k →∞

which is sufficient to show convergence towards a fixed-point

16

Many different ways to find fixed-point

• Many algorithms for large-scale optimization are of the form:

zk+1 := (1− α)zk + αT̂kz
k = zk − α(zk − T̂kzk)

where α ∈ (0, 1) and T̂k is either:
• The full operator T (large-scale)
• A randomized coordinate block update operator of T (huge-scale)
• A stochastic approximation of T (huge-scale)

• The expected zk+1 given zk for both stochastic methods satisfy:

Ekzk+1 = zk − α(zk − Tzk)

they are unbiased stochastic versions of the full operator method

17

Finding fixed-point of nonexpansive mapping

• The sufficient conditions:

1. (‖z − xk‖)k≥0 converges for all z ∈ FixT
2. ‖Txk − xk‖ → 0 as k →∞

are also necessary conditions

• All orbits from algorithms that find fixed-point satisfy these

18

How to guarantee conditions – Deterministic case

• Typically, by constructing Lyapunov inequality of the form

‖zk+1 − z?‖22 + κk+1 ≤ ‖zk − z?‖22 + κk − γk

where γk ≥ 0 and κk ≥ 0 satisfy
• γk → 0 implies ‖Txk − xk‖ → 0
• ‖Txk − xk‖ → 0 implies κk → 0

• Easy to verify that necessay and sufficient assumptions hold

19

How to guarantee conditions – Stochastic case

• Typically by a stochastic Lyapunov inequality of the form

Ek‖zk+1 − z?‖22 + κk+1 ≤ ‖zk − z?‖22 + κk − γk

where γk ≥ 0 and κk ≥ 0 as before

• The Robbins-Siegmund supermartingale theorem show that
conditions for convergence hold a.s.

20

The only thing left is to find κk and γk for your algorithm ;)

21

Thank you

Questions?

22

