Fixed-Point Interpretations of Large-Scale
Convex Optimization Algorithms

Pontus Giselsson



Algorithm types and problem dimensions

Problem dimension Algorithm type
small to medium scale Second-order methods
(up to 1’000 variables) (Newton's method, interior point)
large-scale First-order methods

(up to 100'000 variables)

huge-scale Stochastic, coordinate,
(more than 100°000 variables) parallel asynchronous
first-order methods

In data rich fields, problems usually large to huge scale



Large-and huge scale algorithms

Will present unified view of:

o Projected gradient methods

e Proximal gradient methods

e Forward-backward splitting

e Douglas-Rachford splitting

e The alternating direction method of multipliers
e SAGA

e Finito/MISO

¢ SVRG

e Block-coordinate (proximal) gradient descent

o Block-coordinate consensus optimization

(Three operator splitting methods)
e (Chambolle-Pock and Primal-dual methods)



First-order method building blocks

e (Sub-)gradients:

Vi(x) = :
of
Oy

e Projections onto a sets C:
IIo(z) = argmin(||lz — z|j2 : x € C)
x
e Proximal operators:
prox,,(z) = argmin(g(x) + 55 [lz — 23)
€T

where v > 0 is a parameter.



Prox is generalization of projection

e Introduce the indicator function of a set C

(@) = {0 ifrecC

oo otherwise

(this is an extended valued function, i.e., tc : R = RU {o0})
e Then

[o(z) = argmin(||z — 2|2 : © € O)
x
= argmin(3 |z — 2|3 : 2 € O)
x
= argmin(3 |z — 2|13 + ic(2)
= pI‘OXLC(Z)

(projection onto C' equals prox of indicator function of C')



Prox as resolvent

e The proximal operator satisfies

prOX'y_q = (I + ’yag)_l

where

e (g is the subdifferential operator
e ()7!is the inverse operator
e (I4+~0g)~"is called the resolvent

e Reason: optimality condition for the prox-computation:
T = prox.,,(z)
x = argmin{g(x) + %Hx —z|*}
x
0€~9g(z)+z—2
z€ (I +~0g)x
x=(I+~0g9) 'z

te ¢



Problem formulations

e Most algorithms solve problems of the form
minimize f(z) + g(x)

where f, g may be extended-valued: f,g:R" = RU {oco}
e Models e.g., constrained problems through

minimize f(z) + to(x)

where t¢ is indicator function for set C'



Consensus formulation

e What if we want to solve problems of the form
n
. . . 1
minimize - ZfL(a:)
i=1

e One approach is to use consensus formulation:

n
minimize * Z filx)) +ee(xy, ..o xn)
— 9(x)
F(x)

with individual x; for each f; and a consensus constraint
C:: {(ﬁCl,...,xn) | :...:xn}

e Problem reduces to two function problem from before
e (Also called divide and concur)



Algorithms — An abstract view

e Most algorithms translate problem to fixed-point problem:
find 2* such that Ta* = x*

where T is referred to as fixed-point operator (mapping)
e Fixed-points of T have close relationship to solution of problem

e Most algorithms are based on one of the following:

e The forward-backward map
e The Douglas-Rachford map



The forward-backward map

Assume V f is Lipschitz and f is convex, g is convex, then (CQ)

x € argmin{ f(z) + g(z)} & 0 € Vf(x) + dg(z)
& =V f(x) € 19g(x)
S (I —~Vfx e (I+~0g)x
& (I4+~509) *(I —Vf)zo>x
& prox. (I —yVflz =z

The map prox. (I —yVf) is the FB map
Its fixed-points coincide with solutions to optimization problem

Reverse order gives backward-forward operator (I — nyf)proxvg:

Argmin{f(z) + g(z)} = prox. (Fix ((I — nyf)proxw))

where FixT = {z : x = Tx}
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The Douglas-Rachford map

Let R,y = 2prox. s — I be the reflector or reflected resolvent

It can be shown that
Argmin{ f(2) + g(x)} = prox.,,(FixR, s Ryg)

The composition of reflected resolvents R+ ¢4 is DR map

Fixed-point solves optimization problem after prox-step
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Why these mappings?

They have the favorable property of being nonexpansive
Forward-backward operator

e Assume f,g convex, Vf L-Lipschitz, and vy € (0, 2)

e Then prox_(I —V f) is nonexpansive
Douglas-Rachford operator

e Assume f, g convex and v € (0, 00)

e Then R,fR,4 is nonexpansive

Reason, building blocks have similar favorable properties
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Nonexpansive

e The operators T" are nonexpansive: for all z, y:
[Tz =Tyl < [l —yll

o Let y = where T =T7 is a fixed-point to T, then
[Tz — 2| < [lz — |

e 2D graphical representation

Tz in gray area (distance to fixed-point not increased)
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Iterating T’

e The iteration
oFtl = Tk

is not guaranteed to converge to a fixed-point
e Example: T is a rotation

e Why is nonexpansiveness a useful property?
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The role of a-averaging

o We consider averaged iteration of the nonexpansive mapping 7"

2 = (1 — a)z® + aT2”

where a € (0,1)

e 2D example on where x
(z € FixT):

k+1 can end up for different o

O-a=1 O-a=07 O-a=05 O-a=025
e Distance to fixed-points decreased if o € (0,1) and Tz* # z*
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Property of a-averaged operator

e Let S=(1—a)l+aT and z**! = Sz*, then it can be shown
2"+t — 2% < |2 — 2| — B||2* — Sz¥|?

for all z € FixS = FixT and some 3 > 0
e ||2% — z||? is Lyapunov function and ||z* — Sz*|| gives decrease

o Consequence:
e (Jl2* — 2||)x>0 converges for all z € FixT
o ||z — Sz*|| = afjz® — T2F|| - 0as k = o

which is sufficient to show convergence towards a fixed-point
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Many different ways to find fixed-point

e Many algorithms for large-scale optimization are of the form:
= (1= a)2F + aTy2? = 2F — a(2F — Ti.2%)

where a € (0,1) and T}, is either:

e The full operator T' (large-scale)
o A randomized coordinate block update operator of T' (huge-scale)
o A stochastic approximation of 7' (huge-scale)

e The expected z¥*1 given 2" for both stochastic methods satisfy:
Epzftl = 2% — a(2¥ — T25)

they are unbiased stochastic versions of the full operator method
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Finding fixed-point of nonexpansive mapping

e The sufficient conditions:

1. (J]z — z¥||)x>0 converges for all z € FixT
2. ||Tz* — 2% = 0as k — oo

are also necessary conditions

o All orbits from algorithms that find fixed-point satisfy these
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How to guarantee conditions — Deterministic case

o Typically, by constructing Lyapunov inequality of the form

1250 = 2113 + ke < 12" = 2113 + ke — e

where v > 0 and ki > 0 satisfy
e i — 0 implies ||T2* — z*|| — 0
o | Tz — 2*|| — 0 implies x5 — 0

e Easy to verify that necessay and sufficient assumptions hold
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How to guarantee conditions — Stochastic case

e Typically by a stochastic Lyapunov inequality of the form
Epol| 2% = 2713 + mper < (127 = 2713 + mi —

where v > 0 and ki > 0 as before

e The Robbins-Siegmund supermartingale theorem show that
conditions for convergence hold a.s.
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The only thing left is to find kj and ~y; for your algorithm ;)
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Thank you

Questions?

22



