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• goal: evaluate heart function outside of the body for safer (+
marginal) heart transplantation. To do this we use a mechanical
load to represent the body.



Physiological afterload



Mechanical afterload

Diastole: pressurized balloon stops blood flow

Systole: “check valve” allows air out of balloon

Measurement: balloon pressure

Actuator: roller pump



Mechanical afterload

redacted
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Motivation

• So, how do we know that our load is physiologically representitive?
• We could look at P waveforms, but this is highly variable between

individuals and conditions (same heart won’t behave exactly the
same in vivo and ex vivo).

• Alternatively, consider in PV loop (no more time info), another
standard

• in the mechanical afterload, we can adjust the pressure
(max,min,mean) and mean flow, but this doesn’t necessarily
translate to a physiologically accurate impedance.

• One idea is to use a well-established model of the load, with
parameters that are widely considered to be physiologically
interpretable, and fit that model to the measured data when using
the mechanical load.
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The Windessel heart afterload model

• That model is the Windkessel model.
• The heart is represented as a current source, with model input

being flow and the output being pressure measured in the aorta
(alt. pulmonary artery).



The Windessel heart afterload model

Parameter Unit Name

Rc mmHg/(L/min) Central resistance

Rp mmHg/(L/min) Peripheral resistance

C L/mmHg Compliance

L mmHg min/(L/min) Inertance
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The Windessel heart afterload model

• Note that the central resistance Rc contributes to flow impedance
only during acceleration of blood through the system.



Model formulation

The circuit model yields the transfer function

Gc(s |θ) = Rc +
RP

1 + sCRp
−

Rc

1 + sL/Rc

from u to y, parameterized in

θ = [Rc L C Rp]
> � 0.



Model fitting

With parameter set The optimal parameter set is given by

θo = arg min
θ�0

J(θ), (1)

where

J(θ) =
1
2
ε(θ)>ε(θ) (2)

with output error of the model against the sampled system

ε(θ) = y − ŷ(θ) (3)
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Model fitting

• minimize the squared error with Newton’s method
• Using the Optim package in Julia
• We identify the CT parameters directly (the ZOH operator is

included within the optimized function). Guarantees that the DT
system that’s solved maps back to our CT system.
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ȳ

ū
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Initialization

• multiple initialization
• One of four parameters (Rp) well approximated mean(P)/mean(Q)
• Otherwise, uniform positive distributions (0.001:10)



Initialization
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With the discrete time state space realization {A,B,C,D},
simulating the system forward in time gives

x1 = Axn + Bun

x2 = A2xn + ABun + Bu1

...

xn = Anxn + An−1Bun +
n−1∑
k=1

An−k−1Buk︸                             ︷︷                             ︸
M

Using that xn = x0 we can then solve for the initial state

x0 = (I − An) \ M,
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Initialization

• here we enforce the periodic stationarity condition, that the initial
state is the same as the final state for a given periodic input. x0 =
xn

• alternatively we could run a longer experiment and ignore the
model output until the transient caused by our x0 guess fades.
This could be long depending on the dynamics of the system.

• Here we instead solve for x0 directly using this periodic
stationarity assumption (quite close to the truth for this system).



Fitting data from a previous publication

θ = [0.93 0.085 0.073 13.2]>

θ̂ = [0.95 0.095 0.074 13.6]>



In vivo measurements



Ex vivo measurements



Comparison of parameters

Data source Rc L C Rp MSE

stergiopulos1999 0.95 0.095 0.074 13.6 0.029

in vivo 1.6 8.5 0.085 62.9 0.15

in vivo 1.6 4030 0.088 62.9 0.15

ex vivo 0.61 31 0.34 148 0.036
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Comparison of parameters

• 1999: result closely matches fit from paper
• invivo: notably poorer MSE, but reasonable ranges
• invivo: similar MSE for vastly different L... low sensitivity and high

uncertainty in that parameter
• exvivo: better MSE
• an advantage of this fitting method is that it allows for exact

evaluation of the Hessian, facilitating sensitivity analysis.



Parameter sensitivity

J(θo + δ) − J(θo) ≈
1
2
δ>Hδ =

1
2
δ>VΣV>δ,

Source
Σmax

Σmin
V[1]> V[4]>

sterg1999 3e3
[
−0.02 0.02 −1 0

] [
1 −0.28 −0.21 −0.01

]
in vivo 1e7

[
0 0 −1 0

] [
0 1 0 0

]
in vivo 3e14

[
0 0 1 0

] [
0 −1 0 0

]
ex vivo 3e9

[
−1 −0.07 0 0

] [
0 1 0 0

]
θ = [Rc L C Rp]
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Parameter sensitivity

• Unitary vectors but I’ve rounded here for visibility.
• compare back to table (low confidence in L gives two close MSEs

but vastly different params in in vivo case)
• ster + in vivo: most sensitive to C (highest certainty)
• ster least sensitive to Rc
• in vivo least sensitive to L, corresponding to vastly different L

values on previous slide (same MSE)
• ex vivo most sensitive to Rc, least sensitive to L



State space form
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State space form

• as L -> infinity the model reduces to single order system,
3-element Windkessel.



Future work

Investigate fit across the parameter space

PV loop measurements

in vivo and ex vivo measurements on the same heart

investigate why identifiability is poor on some parameters in this model
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Future work

• This gives a local approximation of the optium parameters... try
method more widely across the parameter space

• unreliable measurements, repeat with more reliable hardware
•
• identify an error model as well (not just Gaussian distribution as

assumed here)



Thanks for listening!
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