

Fitting a physiological model to a mechanical afterload.

Harry Pigot

LUNDS

UNIVERSITET

Motivation

Interview of the windessel heart afterload model

Model fitting

- Results
- Oiscussion
- Future work

•	Motivation			
٠	The Windessel	heart afterload	model	
٥	Model fitting			
٥	Results			
٥	Discussion			
٥	Future work			

 goal: evaluate heart function outside of the body for safer (+ marginal) heart transplantation. To do this we use a mechanical load to represent the body.

Physiological afterload

Mechanical afterload

- Diastole: pressurized balloon stops blood flow
- Systole: "check valve" allows air out of balloon
- Measurement: balloon pressure
- Actuator: roller pump

Mechanical afterload

redacted

Motivation

Isovolumetric contraction _____ Isovolumetric relaxation

```
How well does our machinebehave like the body?
```

-Motivation

2021-02-19

- So, how do we know that our load is physiologically representitive?
- We could look at P waveforms, but this is highly variable between individuals and conditions (same heart won't behave exactly the same in vivo and ex vivo).
- Alternatively, consider in PV loop (no more time info), another standard
- in the mechanical afterload, we can adjust the pressure (max,min,mean) and mean flow, but this doesn't necessarily translate to a physiologically accurate impedance.
- One idea is to use a well-established model of the load, with parameters that are widely considered to be physiologically interpretable, and fit that model to the measured data when using the mechanical load.

The Windessel heart afterload model

2021-02-19

How well does our machinebehave like the body?

L The Windessel heart afterload model

- That model is the Windkessel model.
- The heart is represented as a current source, with model input being flow and the output being pressure measured in the aorta (alt. pulmonary artery).

Parameter	Unit	Name
$ \begin{array}{c} R_c \\ R_p \\ C \\ L \end{array} $	mmHg/(L/min) mmHg/(L/min) L/mmHg mmHg min/(L/min)	Central resistance Peripheral resistance Compliance Inertance

How well does our machinebehave like the body? Letter The Windessel heart afterload model

The Windessel heart afterload model

Parameter	Unit	Name
R,	mmHg/(L/min)	Central resistance
Ra	mmHg/(L/min)	Peripheral resistance
ć	L/mmHg	Compliance
	mand in only (d. Inda)	to entre or a

• Note that the central resistance R_c contributes to flow impedance only during acceleration of blood through the system.

The circuit model yields the transfer function

$$G_c(s|\theta) = R_c + \frac{R_P}{1 + sCR_p} - \frac{R_c}{1 + sL/R_c}$$

from u to y, parameterized in

$$\theta = [R_c \ L \ C \ R_p]^\top > 0.$$

With parameter set The optimal parameter set is given by

$$\theta^{o} = \underset{\theta > 0}{\arg\min} J(\theta), \tag{1}$$

where

$$J(\theta) = \frac{1}{2} \epsilon(\theta)^{\mathsf{T}} \epsilon(\theta)$$
⁽²⁾

with output error of the model against the sampled system

$$\epsilon(\theta) = y - \hat{y}(\theta) \tag{3}$$


```
How well does our machinebehave like the body?
```

```
Model fitting
```


- · minimize the squared error with Newton's method
- Using the Optim package in Julia
- We identify the CT parameters directly (the ZOH operator is included within the optimized function). Guarantees that the DT system that's solved maps back to our CT system.

Initialization

$$G_c(s|\theta) = R_c + \frac{R_P}{1 + sCR_p} - \frac{R_c}{1 + sL/R_c}$$
$$G_c(0|\theta) = R_p$$
$$R_p^0 = \frac{\bar{y}}{\bar{u}}$$

- multiple initialization
- One of four parameters (Rp) well approximated mean(P)/mean(Q)
- Otherwise, uniform positive distributions (0.001:10)

Initialization

With the discrete time state space realization $\{A, B, C, D\}$, simulating the system forward in time gives

 $x_1 = Ax_n + Bu_n$ $x_2 = A^2x_n + ABu_n + Bu_1$

Using that $x_n = x_0$ we can then solve for the initial state

 $x_0 = (I - A^n) \setminus M,$

- here we enforce the periodic stationarity condition, that the initial state is the same as the final state for a given periodic input. x0 = xn
- alternatively we could run a longer experiment and ignore the model output until the transient caused by our x0 guess fades. This could be long depending on the dynamics of the system.
- Here we instead solve for x0 directly using this periodic stationarity assumption (quite close to the truth for this system).

Fitting data from a previous publication

 $\boldsymbol{\theta} = [0.93 \ 0.085 \ 0.073 \ 13.2]^{\top} \\ \boldsymbol{\hat{\theta}} = [0.95 \ 0.095 \ 0.074 \ 13.6]^{\top}$

In vivo measurements

Ex vivo measurements

Data source	R_c	L	С	R_p	MSE
stergiopulos1999	0.95	0.095	0.074	13.6	0.029
in vivo	1.6	8.5	0.085	62.9	0.15
ex vivo	0.61	31	0.34	148	0.036

Data source	R_c	L	С	R_p	MSE
stergiopulos1999 in vivo	0.95 1.6	0.095 8.5	0.074 0.085	13.6 62.9	0.029
in vivo	1.6	4030	0.088	62.9	0.15
ex vivo	0.61	31	0.34	148	0.036

Data source	R_c	L	С	R_p	MSE
stergiopulos1999	0.95	0.095	0.074	13.6	0.029
in vivo	1.6	8.5	0.085	62.9	0.15
in vivo	1.6	4030	0.088	62.9	0.15
ex vivo	0.61	31	0.34	148	0.036

Data source	R_c	L	С	R_p	MSE
stergiopulos1999	0.95	0.095	0.074	13.6	0.029
in vivo	1.6	8.5	0.085	62.9	0.15
in vivo	1.6	4030	0.088	62.9	0.15
ex vivo	0.61	31	0.34	148	0.036

Data source	R_c	L	С	R_p	MSE
sterniopulos1999	0.95	0.095	0.074	13.6	0.025
in vivo	1.6	8.5	0.085	62.9	0.15
		4030			
an vitra	0.61	31	0.34	148	0.036

-Comparison of parameters

- 1999: result closely matches fit from paper
- invivo: notably poorer MSE, but reasonable ranges
- invivo: similar MSE for vastly different L... low sensitivity and high uncertainty in that parameter
- exvivo: better MSE
- · an advantage of this fitting method is that it allows for exact evaluation of the Hessian, facilitating sensitivity analysis.

Parameter sensitivity

$$J(\theta^{o} + \delta) - J(\theta^{o}) \approx \frac{1}{2} \delta^{\top} H \delta = \frac{1}{2} \delta^{\top} V \Sigma V^{\top} \delta,$$

Source	$\frac{\Sigma_{max}}{\Sigma_{min}}$	$V[1]^{ op}$	$V[4]^{ op}$
sterg1999 in vivo in vivo ex vivo	3e3 1e7 3e14 3e9	$ \begin{bmatrix} -0.02 & 0.02 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} $ $ \begin{bmatrix} -1 & -0.07 & 0 & 0 \end{bmatrix} $	$\begin{bmatrix} 1 & -0.28 & -0.21 & -0.01 \end{bmatrix} \\ \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & -1 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$

 $\boldsymbol{\theta} = [R_c \ L \ C \ R_p]^\top$

How well does our machinebehave like the body? $\[t]{}^{\[t]}$ Discussion

Parameter sensitivity

			1
	$J(\theta)$	$(+\delta) - J(\theta'') \approx \frac{1}{2}\delta''H\delta =$	$\frac{1}{2}\delta'' V\Sigma V'\delta$,
Source	$\frac{\Sigma_{max}}{\Sigma_{min}}$	$V[1]^{\top}$	$V[4]^{T}$
sterg1999	3c3	-0.02 0.02 -1 0	1 -0.28 -0.21 -0.01
in vivo	1c7	0 0 -1 0	[0 1 0 0]
in vivo	3c14	`lo o 1 ol´	lò –1 0 ốl
	0.0	1 000 0 01	10 1 0 01

- Unitary vectors but I've rounded here for visibility.
- compare back to table (low confidence in L gives two close MSEs but vastly different params in in vivo case)
- ster + in vivo: most sensitive to C (highest certainty)
- ster least sensitive to Rc
- in vivo least sensitive to L, corresponding to vastly different L values on previous slide (same MSE)
- ex vivo most sensitive to Rc, least sensitive to L

State space form

In continuous time,

$$\dot{x}_{c} = \underbrace{\begin{bmatrix} -\frac{1}{CR_{p}} & 0\\ 0 & -\frac{R_{c}}{L} \end{bmatrix}}_{Y_{c}} x_{c} + \underbrace{\begin{bmatrix} 1\\ R_{c} \end{bmatrix}}_{B_{c}} u_{c}$$

$$\underbrace{\begin{bmatrix} A_{c} \\ \frac{1}{C} & -\frac{R_{c}}{L} \end{bmatrix}}_{C_{c}} x_{c} + \underbrace{\begin{bmatrix} R_{c} \end{bmatrix}}_{D_{c}} u_{c}$$

As $L \to \infty$,

$$G_c(s|\theta) = R_c + \frac{R_P}{1 + sCR_p}$$

(4)

(5)

 as L -> infinity the model reduces to single order system, 3-element Windkessel.

- Investigate fit across the parameter space
- PV loop measurements
- in vivo and ex vivo measurements on the same heart
- investigate why identifiability is poor on some parameters in this model


```
How well does our machinebehave like the body?
```

-Future work

	Future work
o In	vestigate fit across the parameter space
o Pi	/ loop measurements
o in	vivo and ex vivo measurements on the same heart
o in	vestigate why identifiability is poor on some parameters in this model

- This gives a local approximation of the optium parameters... try method more widely across the parameter space
- unreliable measurements, repeat with more reliable hardware
- ٠
- identify an error model as well (not just Gaussian distribution as assumed here)

- Total arterial inertance as the fourth element of the windkessel model Nikos Stergiopulos, Berend E. Westerhof, and Nico Westerhof American Journal of Physiology-Heart and Circulatory Physiology 1999 276:1, H81-H88
- heart diagram, Ben Himme https://www.pathwayz.org/Tree/Plain/CIRCULATORY+SYSTEM