

Fitting a physiological model to a mechanical afterload.

Harry Pigot

LUNDS UNIVERSITET

Motivation

² The Windessel heart afterload model

Model fitting

- Results
- Discussion
- Future work

• goal: evaluate heart function outside of the body for safer (+ marginal) heart transplantation. To do this we use a mechanical load to represent the body.

Physiological afterload

Mechanical afterload

- **.** Diastole: pressurized balloon stops blood flow
- Systole: "check valve" allows air out of balloon
- Measurement: balloon pressure
- Actuator: roller pump

redacted

Motivation

Isovolumetric contraction <a>>Sovolumetric relaxation

```
How well does our machinebehave like the body?
 Motivation
```
Motivation

2021-02-19

- So, how do we know that our load is physiologically representitive?
- We could look at P waveforms, but this is highly variable between individuals and conditions (same heart won't behave exactly the same in vivo and ex vivo).
- Alternatively, consider in PV loop (no more time info), another standard
- in the mechanical afterload, we can adjust the pressure (max,min,mean) and mean flow, but this doesn't necessarily translate to a physiologically accurate impedance.
- One idea is to use a well-established model of the load, with parameters that are widely considered to be physiologically interpretable, and fit that model to the measured data when using the mechanical load.

The Windessel heart afterload model

2021-02-19

[How well does our machinebehave like the body?](#page-0-0) [The Windessel heart afterload model](#page-8-0)

The Windessel heart afterload model

 $\mathcal{L}_{\mathcal{L}}$

- That model is the Windkessel model.
- The heart is represented as a current source, with model input being flow and the output being pressure measured in the aorta (alt. pulmonary artery).

2021-02-19

[How well does our machinebehave like the body?](#page-0-0) \Box [The Windessel heart afterload model](#page-8-0)

 \Box The Windessel heart afterload model

M.

• Note that the central resistance R_c contributes to flow impedance only during acceleration of blood through the system.

The circuit model yields the transfer function

$$
G_c(s|\theta) = R_c + \frac{R_P}{1 + sCR_P} - \frac{R_c}{1 + sL/R_c}
$$

from *u* to y, parameterized in

$$
\theta = [R_c L C R_p]^\top > 0.
$$

With parameter set The optimal parameter set is given by

$$
\theta^o = \underset{\theta > 0}{\arg \min} J(\theta),\tag{1}
$$

where

$$
J(\theta) = \frac{1}{2} \epsilon(\theta)^{\top} \epsilon(\theta)
$$
 (2)

with output error of the model against the sampled system

$$
\epsilon(\theta) = y - \hat{y}(\theta) \tag{3}
$$

```
2021-02-19
```

```
How well does our machinebehave like the body?
Model fitting
```
Model fitting

- minimize the squared error with Newton's method
- Using the Optim package in Julia
- We identify the CT parameters directly (the ZOH operator is included within the optimized function). Guarantees that the DT system that's solved maps back to our CT system.

Initialization

$$
G_c(s|\theta) = R_c + \frac{R_P}{1 + sCR_P} - \frac{R_c}{1 + sL/R_c}
$$

$$
G_c(0|\theta) = R_P
$$

$$
R_p^0 = \frac{y}{\bar{u}}
$$

- multiple initialization
- One of four parameters (Rp) well approximated mean(P)/mean(Q)
- Otherwise, uniform positive distributions (0.001:10)

Initialization

.

With the discrete time state space realization $\{A, B, C, D\}$, simulating the system forward in time gives

> $x_1 = Ax_n + Bu_n$ $x_2 = A^2 x_n + AB u_n + Bu_1$

Using that $x_n = x_0$ we can then solve for the initial state

 $x_0 = (I - A^n) \setminus M$,

- here we enforce the periodic stationarity condition, that the initial state is the same as the final state for a given periodic input. $x0 =$ xn
- alternatively we could run a longer experiment and ignore the model output until the transient caused by our x0 guess fades. This could be long depending on the dynamics of the system.
- Here we instead solve for x0 directly using this periodic stationarity assumption (quite close to the truth for this system).

Fitting data from a previous publication

 $\theta = [0.93 \ 0.085 \ 0.073 \ 13.2]^\top$ $\hat{\theta} = [0.95 \ 0.095 \ 0.074 \ 13.6]^\top$

In vivo measurements

Ex vivo measurements

[How well does our machinebehave like the body?](#page-0-0) [Discussion](#page-22-0)

Щ,

Comparison of parameters

- 1999: result closely matches fit from paper
- invivo: notably poorer MSE, but reasonable ranges
- invivo: similar MSE for vastly different L... low sensitivity and high uncertainty in that parameter
- exvivo: better MSE
- an advantage of this fitting method is that it allows for exact evaluation of the Hessian, facilitating sensitivity analysis.

Parameter sensitivity

$$
J(\theta^o + \delta) - J(\theta^o) \approx \frac{1}{2} \delta^\top H \delta = \frac{1}{2} \delta^\top V \Sigma V^\top \delta,
$$

 $\theta = [R_c \ L \ C \ R_p]^\top$

-Parameter sensitivity

- Unitary vectors but I've rounded here for visibility.
- compare back to table (low confidence in L gives two close MSEs but vastly different params in in vivo case)
- ster $+$ in vivo: most sensitive to C (highest certainty)
- ster least sensitive to Rc
- in vivo least sensitive to L, corresponding to vastly different L values on previous slide (same MSE)
- ex vivo most sensitive to Rc, least sensitive to L

State space form

In continuous time,

$$
\dot{x}_c = \underbrace{\begin{bmatrix} -\frac{1}{CR_p} & 0 \\ 0 & -\frac{R_c}{L} \end{bmatrix}}_{C_c} x_c + \underbrace{\begin{bmatrix} 1 \\ R_c \end{bmatrix}}_{B_c} u_c
$$
\n
$$
y_c = \underbrace{\begin{bmatrix} \frac{1}{C} & -\frac{R_c}{L} \end{bmatrix}}_{C_c} x_c + \underbrace{\begin{bmatrix} R_c \end{bmatrix}}_{D_c} u_c
$$

As $L \to \infty$,

$$
G_c(s|\theta) = R_c + \frac{R_P}{1 + sCR_P}
$$

(4)

(5)

• as L -> infinity the model reduces to single order system, 3-element Windkessel.

- **Investigate fit across the parameter space**
- PV loop measurements
- **•** in vivo and ex vivo measurements on the same heart
- investigate why identifiability is poor on some parameters in this model

[How well does our machinebehave like the body?](#page-0-0) [Future work](#page-31-0)

Future work

- This gives a local approximation of the optium parameters... try method more widely across the parameter space
- unreliable measurements, repeat with more reliable hardware
- •
- identify an error model as well (not just Gaussian distribution as assumed here)

- Total arterial inertance as the fourth element of the windkessel model Nikos Stergiopulos, Berend E. Westerhof, and Nico Westerhof American Journal of Physiology-Heart and Circulatory Physiology 1999 276:1, H81-H88
- heart diagram, Ben Himme https://www.pathwayz.org/Tree/Plain/CIRCULATORY+SYSTEM