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Introduction, managing cloud applications

Application Orchestration

Edge cluster 1

Datacenter

Edge cluster 2

Trends in modern cloud computing

Applications split into graphs of smaller services

Clouds of multiple clusters

Complex service graphs and dynamic environments
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Introduction, managing cloud applications

Problem, how to deploy/manage an application such that

a) users receive a good QoS (e.g. low latency, robustness)

b) the costs are minimized (e.g. allocated resources)

Automatic adaption of resources and scheduling

Popular research topic considering single service application, and

recently more considering service-graph applications.

Good decisions necessitates good models
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Applications as queuing networks

Common to model a service1 as a queue.

Lifetime of a request: (i) arrives, (ii) is assigned a service time from

Gs , (iii) processed according to discipline and (iv) departs once

completed.

Queuing disciplines

First come, first served (FCFS)

Processor sharing (PS)

Pure delay (INF)

1i.e. server, but not necessarily a physical computer
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Applications as queuing networks

Applications of many stages, use many queues in a network

Figure: Simple example, where each stage is a service in a service graph.

Exists many extensions, one important is

Multi-class queues; Each queue has a set of classes, each request is

assigned to one. Each class has its own Gs , and destination once

completed.

P r,s
i , j - the probability that a completed request of class r in queue i

gets routed to class s in queue j .
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Evaluating a queuing network

Xi ,r (t ) - population of requests of class r in queue i at time t .

Always possible to estimate the PMF of Xi ,r (t )∀i ,r, t ≥ 0 using MC

simulations.

Very computationally intensive, not suitable for most cases.

Instead, approximate important metrics (e.g. mean queue length,

response time)

Exists many methods

Stationary, product-form -> methods utilizing the BCMP theorem

Transient, non-product-from -> fluid models
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Fluid model of a queuing network

Model E
[

Xi ,r (t )
]

as xi ,r (t ), where X (0) = x(0) and

ẋi ,r (t ) = f i n
i ,r (x(t ))− f out

i ,r (x(t ))

Difficult to find f i n , f out such that x(t ) is a good approximation.

Much research has been done considering the

single-queue/single-class case.

Queuing networks trickier, for some types the mean-field

approximation gives one way.
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Fluid model of a queuing network

Mean-field approximation

Let X be a vector of populations in a density-dependent population

process (special type of CTMC).

Transition l such that at an event X
(
t+

)= X (t )+ l with rate function

f (X , l ). The drift then becomes F (X ) =∑
l∈L l f (X , l )

Mean-field approximation; ẋ = F (x), certain conditions v−1X (v) → x
at all t when v →∞ (Kurtz’s theorem).

Mean-field fluid model

For some queuing networks, possible to translate to such a CTMC.

Applies to multi-class queuing networks of PS and INF queues where

Gs has a Phase-type distribution 2 3.
2Closed networks: F. Pérez and G. Casale, Line: Evaluating Software Applications

in Unreliable Environments, IEEE Transactions on Reliability (2017)
3Open/mixed networks: (allowing arrivals/departures) pre-print available
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Mean-field fluid model

Phase-type distribution

Represent a distribution as the time to absorption in a single-sink CT

Markov random walk across some graph.

Parameterized (for every class r in every queue i )

α ∈RSi ,r , prob. vector of starting transient state

Ψ ∈RSi ,r ×Si ,r , matrix of transition rates between transient states

ψ ∈RSi ,r , transition rates between transient states and the sink

We can now introduce Xi ,r,a

- population of requests in state a, in class r , in queue i .
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Mean-field fluid model

Assume a multi-class queuing network of PS and INF queues under

Poisson arrivals

Nice thing with PS and INF queues, order does not matter.

- θi ,r,a(X ) = Xi ,r,a
min(ki ,

∑
s,b Xi ,s,b)∑

s,b Xi ,s,b

Requests in i ,r, a times the share of each request in queue i

then with PH distributions, the evolution of X is a CTMC.
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Mean-field fluid model

Exists four types of transitions (l1 and l2 from Peréz & Casale)

- ei ,r,a , zero vector with 1 on position i ,r, a.

between phases: l1 = ei ,r,b −ei ,r,a

f n(X , l1) =Ψi ,r
a,bθi ,r,a(X )

between classes: l2 = e j ,s,b −ei ,r,a

f c (X , l2) =ψi ,r
a α

j ,s
b P r,s

i , jθi ,r,a(X )

arrivals: l3 = ei ,r,a

f a(X , l3) =αi ,r
a λi ,r

departures: l4 =−ei ,r,a

f d (X , l4) =ψi ,r
a

(
1−∑

j ,s P r,s
i , j

)
θi ,r,a (X )
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Mean-field fluid model

Drift in each i ,r, a

Fi ,r,a(X ) =∑
b
Ψi ,r

b,aθi ,r,b(X )+αi ,r
a

∑
j ,s,b

ψ
j ,s
b P s,r

j ,i θ j ,s,b(X )+αi ,r
a λi ,r

Assuming X subsequently ordered in phases/classes/queues

Ψ= diag
(
Ψ1,1,Ψ1,2,Ψ1,3, . . .

)
A = diag

(
α1,1,α1,2,α1,3, . . .

)
B = diag

(
ψ1,1,ψ1,2,ψ1,3, . . .

)
P =

P ·,·
1,1 P ·,·

1,2 ···
P ·,·

2,2 P ·,·
2,2 ···

...
...

...


We can create W =Ψ+B P AT and

F (X ) =W T θ(X )+ Aλ
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Mean-field fluid model

The entire mean-field fluid model can then be expressed as

ẋ =W T θ(x)+ Aλ

x(0) = X (0)

then limv→∞ v−1X (v) = x at all t,

where X (v) is X with k, X (0) and λ scaled with v .

However, can give poor performance for smaller system sizes
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ẋ =W T θ(x)+ Aλ

x(0) = X (0)

then limv→∞ v−1X (v) = x at all t,

where X (v) is X with k, X (0) and λ scaled with v .

However, can give poor performance for smaller system sizes

Johan Ruuskanen Cloud application modeling using mean-field fluid models



14/21

Improving the mean-field fluid model

Why is this?

Want x to approximate E(X ) but

d

d t
E [X ] = E [F (X )] 6= F (E [X ]) = d

d t
x

the queuing network case

E
[
W T θ(X )+ Aλ

]=W T E [θ(X )]+ Aλ 6=W T θ (E [X ])+ Aλ

Can we find another θ̂ (E [X ]) that improves accuracy?
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Improving the mean-field fluid model

Problem,

E
[
θi ,r,a(X )

]=∑
z P (X = z) zi ,r,a

min(ki ,
∑

s,b zi ,s,b)∑
s,b zi ,r,a

θi ,r,a (E [X ]) = E[
Xi ,r,a

] min
(
ki ,

∑
s,b E

[
Xi ,s,b

])∑
s,b E

[
Xi ,s,b

]
First, let θi ,r,a(X ) = Xi ,r,a gi ,r,a(X ),

gi ,r,a(X ) is the processor share of queue i and gi ,r,a(X ) = gi ,s,b(X )

Let θ̂i ,r,a (E [X ]) = E[
Xi ,r,a

]
ĝi ,r,a (E [X ]), then by summing over all

states/classes in queue i

ĝi ,r,a (E [X ]) =
∑

c P
(∑

s,b Xi ,r,a = c
)

min(ki ,c)∑
s,b E

[
Xi ,s,b

] = kiρi (X )∑
s,b E

[
Xi ,s,b

]
Dependence on the PMF of X , we need to allow ĝ to change
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Improving the mean-field fluid model

One such possible function is

ĝi ,r,a
(
x | pi

)= 1(
1+ (

k−1
i

∑
s,b xi ,s,b

)pi
)1/pi

The inverse p-norm, can be seen as a smoothing of gi ,r,a(X ) with

parameter pi .

pi →∞ gives back gi ,r,a(X ).

Nice because of monotonicity:

- given data at stationarity, "optimal" p∗ can be found
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Evaluation, M/M/1 queue

First considering the most simplistic queuing network,

- a single queue with 1 server, 1 class and 1 phase.

The mean field model then gives ẋ =−µmin(1, x)+λ
stationary point: x =λ/µ= ρ ≤ 1,

However, true mean is well-known: E [X ] = ρ
1−ρ .
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Evaluation, M/M/1 queue
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n
g
th

Stationary mean queue length

E
[

X̂∗]
x∗
x∗|p̂∗

The p∗ found is consistently around 1, which gives

ẋ = x · ĝ
(
x | p = 1

)+λ= x

x +1
+λ

known as the Tipper model
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Evaluation, three tandem queues

Three single class queues, queue 1 (INF) and queue 2 & 3 (PS)

W =


−µ1 µ1 0 0 0

0 −4.0 4.0 0 0
0 0 −4.0 4.0 0

1.9 0 0 −2.0 0.1
0.1 0 0 0 −0.1



θ(x) =


x1

x2 ·min(4, x2 +x3)/(x2 +x3)
x3 ·min(4, x2 +x3)/(x2 +x3)
x4 ·min(8, x4 +x5)/(x4 +x5)
x5 ·min(8, x4 +x5)/(x4 +x5)


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Evaluation, three tandem queues
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Figure: (Blue) queue length from simulation, (Red) mean-field model, (Black)

smoothed model with p∗ estimated at every µ1, (Green) smoothed model

with p estimated at µ1 = 0.2
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Conclusion & future work

Conclusion

Managing applications in the cloud is tricky

Model using queuing networks, evaluate using fluid models

Mean-field approximation for networks of PS queues

Not necessarily good, consider using smoothed model

Next steps

Test on a real system.

How to construct a fluid model that tracks a running application.
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