

The Wheelbot

SIG

A Jumping Reaction Wheel Unicycle Presenter: Zheng Jia

Background & activities

(5)

3

Internship at Intelligent Control Systems (2019-2020) MPI-IS, *Germany*

Internship at HiPeRLab (2018) UC Berkeley, *USA*

Doctoral student (2021-present) Automatic Control Lab Lund University, *Sweden*

B.Eng. in Microelectronics (2009-2011) Sun Yat-sen University, *China*

B.Eng. in Electronic & Information Engineering (2011-2013) The Hong Kong Polytechnic University, *Hong Kong*

(2)

M.Sc. in Robotics (2014-2017) ETH Zürich, *Switzerland*

Doctoral project (ELLIIT funded)

Autonomous Force-Aware Swift Motion Control (B14)

PI: Anders Robertsson (LU), co-PI: Lars Nielsen (LiU); with Björn Olofsson (LiU/LU) and Erik Frisk (LiU)

Autonomous Resilient Mobile Robot Path-Tracking Control under Force-Interaction Constraints Zheng Jia, Björn Olofsson, Lars Nielsen, Anders Robertsson

- Coordination of vehicle and manipulator motion under force-interaction constraints and path requirement.
- Online (re-)generation of "interaction trajectories" of path, velocity, and force.
- Robust and resilient feedback methods for adjusting the path traversal online (path-velocity scaling).

Resilient Motion Planning and Control for Autonomous Vehicles Using Learning-Based Prediction Techniques Theodor Westny, Erik Frisk, Björn Olofsson

- For safe planning, a predictive model of surrounding vehicle behavior with a 2–2.5 second prediction horizon is very useful.
- ML-model based on imbalanced real driving data.
- How do models generalize between traffic scenarios?

WASP associated student (2022)

Thanks again to my supervisors and Karl-Erik.

Wheelbot (2019-2022)

Naomi Tashiro

MPI-IS, Germany

Researcher

Sebastian Trimpe

Andreas Rene Geist

Doctoral student at MPI-IS, *Germany*

Robotics leader MPI-IS, Germany

Jonathan Fiene

Professor RWTH, *Germany* since 2020

From 2019-2020 at MPI-IS, *Germany*, under the supervision of Rene and Sebastian, I was working on the wheelbot project.

Wheelbot is a platform for:

- 1. Learning dynamics with physics knowledge [1]
- 2. Nonlinear system control
- 3. Distributed control
- 4. Education (candidate for our control courses)

1. Rath, Lucas, Andreas René Geist, and Sebastian Trimpe. "Using Physics Knowledge for Learning Rigid-body Forward Dynamics with Gaussian Process Force Priors." In *Conference on Robot Learning*, pp. 101-111. PMLR, 2022.

Features

- Off-the-shelf components + 3D printed parts: easy to build
- Symmetric: jump onto one wheel from any initial conditions
- Non-holonomic and underactuated
- Two coupled unstable degrees of freedom
- Nonlinear system

6. Four lipo battery slots, each 12.6 volts

1. 3D-printed Center frame (mm)

2. MAEVARM M2 microcontroller

Modeling

 q_1 : roll q_2 : pitch q_3 : yaw q_4 : rolling wheel q_5 : upper wheel

1. IMUs $\Longrightarrow g^B \Longrightarrow \operatorname{Roll} \& \operatorname{Pitch} q_1, q_2$

- Trimpe, Sebastian, and Raffaello D'Andrea.
 "Accelerometer-based tilt estimation of a rigid body with only rotational degrees of freedom." In 2010 IEEE International Conference on Robotics and Automation, pp. 2630-2636. IEEE, 2010.
- 2. Muehlebach, Michael, and Raffaello D'Andrea. "Accelerometer-based tilt determination for rigid bodies with a nonaccelerated pivot point." *IEEE Transactions on Control Systems Technology* 26, no. 6 (2017): 2106-2120.

- $1. ext{IMUs} \Longrightarrow g^B \Longrightarrow ext{Roll} \& ext{Pitch} q_1, q_2$
- 2. Measurement of i_{th} accelerometer
 - : unknowns
 - : calculated
 - : knowns

$$egin{aligned} m^B_i = & egin{aligned} \ddot{p}^B_w + \Omega^B & egin{aligned} p^B_{iw} - g^B + n^B_i ext{and} & \Omega^B & := \Omega^B(\omega, \dot{\omega}) \ & \longrightarrow & M = QP + N, ext{ and } Q = [g^B \quad \Omega^B] \in \mathbb{R}^{3 imes 4} \end{aligned}$$

- Trimpe, Sebastian, and Raffaello D'Andrea.
 "Accelerometer-based tilt estimation of a rigid body with only rotational degrees of freedom." In 2010 IEEE International Conference on Robotics and Automation, pp. 2630-2636. IEEE, 2010.
- Muehlebach, Michael, and Raffaello D'Andrea.
 "Accelerometer-based tilt determination for rigid bodies with a nonaccelerated pivot point." *IEEE Transactions on Control Systems Technology* 26, no. 6 (2017): 2106-2120.

- $1. \text{ IMUs} \Longrightarrow g^B \Longrightarrow \text{Roll \& Pitch } q_1, q_2$
- 2. Measurement of i_{th} accelerometer
 - : unknowns
 - : calculated
 - : knowns

$$m_i^B = \ddot{p}_w^B + \Omega^B p_{iw}^B - g^B + n_i^B$$
 and $\Omega^B := \Omega^B(\omega, \dot{\omega})$
 $\Longrightarrow M = QP + N$, and $Q = [g^B \quad \Omega^B] \in \mathbb{R}^{3 imes 4}$
 $3. \min_{\hat{Q}} \mathbb{E} \Big[\| \hat{Q} - Q \|_F^2 \Big]$ subj. to $\mathbb{E} \Big[\hat{Q} \Big] = Q$
 $\Longrightarrow \hat{Q} = \Big[\hat{g}^B, \hat{\Omega}^B \Big] = M[X_1^{\star}, X_2^{\star}]$

- Trimpe, Sebastian, and Raffaello D'Andrea.
 "Accelerometer-based tilt estimation of a rigid body with only rotational degrees of freedom." In 2010 IEEE International Conference on Robotics and Automation, pp. 2630-2636. IEEE, 2010.
- Muehlebach, Michael, and Raffaello D'Andrea.
 "Accelerometer-based tilt determination for rigid bodies with a nonaccelerated pivot point." *IEEE Transactions on Control Systems Technology* 26, no. 6 (2017): 2106-2120.

- $1. ext{ IMUs} \Longrightarrow g^B \Longrightarrow ext{Roll} \& ext{Pitch} q_1, q_2$
- 2. Measurement of i_{th} accelerometer
 - : unknowns
 - : calculated
 - : knowns

$$\begin{split} m_{i}^{B} &= \ddot{p}_{w}^{B} + \Omega^{B} p_{iw}^{B} - g^{B} + n_{i}^{B} \text{ and } \Omega^{B} := \Omega^{B}(\omega, \dot{\omega}) \\ & \Longrightarrow M = QP + N, \text{ and } Q = [g^{B} \quad \Omega^{B}] \in \mathbb{R}^{3 \times 4} \\ 3. \min_{\hat{Q}} \mathbb{E} \left[\| \hat{Q} - Q \|_{F}^{2} \right] \text{ subj. to } \mathbb{E} \left[\hat{Q} \right] = Q \\ & \Longrightarrow \hat{Q} = \left[\hat{g}^{B}, \hat{\Omega}^{B} \right] = M[X_{1}^{*}, X_{2}^{*}] \\ & \uparrow \\ 4. \min_{X^{*}} \mathbb{E} \left[\| MX^{*} - Q \|_{F}^{2} \right] \text{ subj. to } \mathbb{E}[MX^{*}] = Q \\ & \Longrightarrow \hat{g}^{B} = MX_{1}^{*} \qquad X_{1}^{*} : \text{ purely dependent on } p_{iw}^{B} \\ & \Rightarrow \hat{q}_{1}, \hat{q}_{2} \\ & \Longrightarrow R(\hat{q}_{1}), R(\hat{q}_{2}) \end{split}$$

5. Fusion with gyro measurements $\dot{\hat{q}}_1 = R(\hat{q}_2) \omega^B_{gyro}$: complementary filter

- Trimpe, Sebastian, and Raffaello D'Andrea.
 "Accelerometer-based tilt estimation of a rigid body with only rotational degrees of freedom." In 2010 IEEE International Conference on Robotics and Automation, pp. 2630-2636. IEEE, 2010.
- 2. Muehlebach, Michael, and Raffaello D'Andrea. "Accelerometer-based tilt determination for rigid bodies with a nonaccelerated pivot point." *IEEE Transactions on Control Systems Technology* 26, no. 6 (2017): 2106-2120.

Linearized dynamics

	q_1	${\dot q}_1$	q_2	${\dot q}_2$	q_3	\dot{q}_{3}	q_4	${\dot q}_4$	q_5	\dot{q}_{5}
q_1	0	1	0	0	0	0	0	0	0	0
${\dot q}_1$	73.1	0	0	0	0	0	0	0	0	0
q_2	0	0	0	1	0	0	0	0	0	0
${\dot q}_{2}$	0	0	167	0	0	0	0	0	0	0
q_3	0	0	0	0	0	1	0	0	0	0
${\dot q}_{3}$	0	0	0	0	0	0	0	0	0	0
q_4	0	0	0	0	0	0	0	1	0	0
${\dot q}_4$	0	0	-153	0	0	0	0	0	0	0
q_5	0	0	0	0	0	0	0	0	0	1
${\dot q}_{5}$	-73.1	0	0	0	0	0	0	0	0	0
	roll		pitch		yaw		rolling		upper	
							wheel		wheel	,
					A					

	q_1			q_1					
	${\dot q}_1$			${\dot q}_1$					
	q_5			q_5					
\underline{d}	${\dot q}_5$	$- \begin{bmatrix} A_1 \end{bmatrix}$	0]	${\dot q}_{5}$	B_1	$0 \left[u_1 \right]$			
dt	q_2		A_2	q_2		$B_2 \rfloor \lfloor u_2 \rfloor$			
	${\dot q}_2$			${\dot q}_{2}$					
	q_4			q_4					
	\dot{q}_4			\dot{q}_4					
roll, pitch, upper and rolling wheels dynamics									

Ξ. _

controllable

 $\begin{bmatrix} \dot{q}_{3} \\ 0 \end{bmatrix}$ $\left[rac{d}{dt} \left[egin{matrix} q_3 \ \dot{q}_3 \end{bmatrix}
ight]$ = 1

yaw dynamics uncontrollable

 u_1

0

0 0

-439.3

0

0 0

635.3

0

0

rolling

wheel

 u_2

0 -51.11

0

0

0

0

0

0

0

2039

upper

wheel

LQR for stabilization

$\frac{d}{dt}$	$egin{array}{c} q_1 \ \dot{q}_1 \ q_5 \ \dot{q}_5 \ q_2 \ \dot{q}_2 \ q_4 \ \dot{q}_4 \ \dot{q}_4$	$= \begin{bmatrix} A_1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ A_2 \end{bmatrix}$	$egin{array}{c} q_1 \ \dot{q}_1 \ q_5 \ \dot{q}_5 \ q_2 \ \dot{q}_2 \ q_4 \ \dot{q}_4 \ \dot{q}_4 \ \end{array}$	$+\begin{bmatrix}B_1\\0\end{bmatrix}$	$egin{array}{c} 0 \ B_2 \end{bmatrix} egin{bmatrix} u_1 \ u_2 \end{bmatrix}$			
roll, pitch, upper and rolling wheels dynamics									
$\operatorname{controllable}$									

 $egin{aligned} ext{sample time: 0.01s} \ Q,R: ext{ diagonal} \ u &= egin{bmatrix} K_1 & 0 \ 0 & K_2 \end{bmatrix} egin{bmatrix} \hat{q}_1 - ar{q}_1 & \dot{\hat{q}}_{1, ext{gyro}} & q_{5, ext{encoder}} & \dot{\hat{q}}_{5, ext{encoder}} \ \hat{\hat{q}}_{4, ext{encoder}} \end{bmatrix} \end{aligned}$

 $ar{q}_1, ar{q}_2$: bias in tilt estimator $\dot{\hat{q}}_1, \dot{\hat{q}}_2$: gryo measurements

 $q_{4,\mathrm{encoder}}, \dot{q}_{4,\mathrm{encoder}}, q_{5,\mathrm{encoder}}, \dot{q}_{5,\mathrm{encoder}}:\mathrm{measurement}\ \mathrm{from}\ \mathrm{optical}\ \mathrm{encoders}$

Self-elevation

roll-up

Both elevations are based on engineered feed-forward control Could be a testbed for learning-based control for erection

Can we control yaw?

 $q(0)=q_l, ext{ with } q_1(0)
eq 0, q_2(0)
eq 0$

- 1. Apply LQR control law $u_0 = K_{lqr} * q_0(t)$
- $\Longrightarrow {\dot q}_0(t) = f(q_0(t), u_0(t))$

 \implies nominal stabilization trajectory $(q_0(t), u_0(t))$ with initial conditions (q_l, u_l)

2. Linearize about $(q_0(t), u_0(t))$

 $\Delta \dot{q} = A(q_0(t),u_0(t))\Delta q + B(q_0(t),u_0(t))\Delta u$

 $\text{But only } A(q_l,u_l), B(q_l,u_l) \text{ are known. Look at } A(q_l,u_l), B(q_l,u_l) \text{ at } t{=}0$

	q_1	${\dot q}_1$	q_2	${\dot q}_{2}$	q_3	${\dot q}_{3}$	q_4	${\dot q}_4$	q_5	${\dot q}_{5}$	u_1	u_2
$\overline{q_1}$	0	1	0	0	0	0	0	0	0	0	0	0
${\dot q}_{1}$	63.31	0	0	0	0	0	0	0	0	0	0	-51.11
q_2	0	0	0	1	0	0	0	0	0	0	0	0
${\dot q}_{2}$	0	0	146.3	0.24	0	-0.93	0	0.07	0	0	-439.3	0
q_3	0	0	0	0	0	1	0	0	0	0	0	0
${\dot q}_{3}$	0	0	-4.58	-0.48	0	0.29	0	-0.14	0	0	0	0
q_4	0	0	0	0	0	0	0	1	0	0	0	0
${\dot q}_{4}$	0	0	-130	0.24	0	-1.14	0	0.07	0	0	635.3	0
q_5	0	0	0	0	0	0	0	0	0	1	0	0
${\dot q}_{5}$	-63.31	0	0	0	0	0	0	0	0	0	0	2039
	roll		pitch		yaw		rolling		upper		rolling	upper
							wheel		wheel	,	wheel	wheel
$A(q_l, u_l)$										B(x)	(u_l)	

 \implies yaw rate \dot{q}_3 controllable

 ${\rm controllable}$

t=0

t=0

controllable

t=0

 $\Delta \dot{x}(t) = A_{
m red}(t)\Delta x + B_{
m red}(t)\Delta u$

For a short amount of time with $t_0=0,\;t_f=0.1\;{
m sec}$

$$\Delta \dot{x}(t) pprox A_{
m red} \Delta x + B_{
m red} \Delta u$$

 $\Delta \dot{x}(t) = A_{
m red}(t)\Delta x + B_{
m red}(t)\Delta u$

For a short amount of time with $t_0 = 0$, $t_f = 0.1$ sec $\Delta \dot{x}(t) pprox A_{
m red} \Delta x + B_{
m red} \Delta u$ Yaw rate deviation $\Delta x_5(0) = 1 \, \mathrm{rad/s}$ $\Delta x(0) = [0,0,0,0,1,0]^T$ Energy driving $\Delta x \Rightarrow 0$ $E=\Delta x(0)^T egin{array}{c} W_c^{-1}(x_l,u_l,0,t_f) egin{array}{c} \Delta x(0) \end{array}$ finite time ctrl. Gramian [1] reaction wheel rolling wheel q_{2}, q_{4} $_{-}q_{3}$ side view front view Van Loan, Charles. "Computing integrals 1. involving the matrix exponential." IEEE transactions on automatic control 23, no. 3 (1978): 395-404.

 $\Delta \dot{x}(t) = A_{
m red}(t)\Delta x + B_{
m red}(t)\Delta u$ For a short amount of time with $t_0 = 0$, $t_f = 0.1$ sec $\Delta \dot{x}(t) pprox A_{
m red} \Delta x + B_{
m red} \Delta u$ Yaw rate deviation $\Delta x_5(0) = 1 \, \mathrm{rad/s}$ $\Delta x(0) = [0,0,0,0,1,0]^T$ Energy driving $\Delta x \Rightarrow 0$ $E = \Delta x(0)^T egin{array}{c} W_c^{-1}(x_l, u_l, 0, t_f) & \Delta x(0) \end{array}$ finite time ctrl. Gramian [1] reaction wheel rolling wheel q_{2}, q_{4} side view front view Van Loan, Charles. "Computing integrals 1. involving the matrix exponential." IEEE transactions on automatic control 23, no. 3 (1978): 395-404.

\Rightarrow easier to control with larger PITCH angle

Doctoral project (ELLIIT funded)

Given force-torque feedback at the end-effector F_m and M_m , control the normal force and motion along the surface

F, v

by controlling au_1, au_2

What we are looking for is an

optimization framework considering both interaction force and path

Autonomous Resilient Mobile Robot Path-Tracking Control under Force-Interaction Constraints Zheng Jia, Björn Olofsson, Lars Nielsen, Anders Robertsson

