

Process Demo

Cool Department Toys

Felix Agner

(A subset of) our department toys

- Omnibots
- Lego Mindstorm
- GoPiGo
- Spot

Omnibots

(a) Robot frame, raspberry pi, battery, servos, crazyflie

(b) Positioning through lighthouse system and crazyflie

(a) Power supply

(b) Nice and clean dynamics

But how do we control it?

- Robot controlled through raspberry pi (raspian)
- Python-based interface between raspberry pi, crazyflie and servos
 - oflib Crazyfly library
 - dynamixel Blomdell's python wrapper https://gitlab.control.lth.se/anders_blomdell/dynamixel
- SSH-connection via router to raspberry pi

Learning Based Control-lab

Motion planning with "car dynamics"

Figure: RRT-generated path

Learning Based Control-lab

Path-tracking video

Future:

- Mass production
- Real-time systems projects
- MSc project in drone formation control (as a landing platform)
- Documentation at https://gitlab.control.lth.se/regler/omnibots
- Cool potential projects
 - Connect with e.g. xbox-controller
 - Real-time vision-based state feedback

Lego Mindstorm

- Build-a-process
- Base" is an "ev3-block"
- Tons of components
 - motor
 - gyroscope
 - beacon/sensor
 - ultrasonic sensor
 - ...
- Pairable with bluetooth (?)
- Program in python https://pybricks.com/ ev3-micropython/

(a) Ev3-block

(b) Crazy robot

Backup Video

Lego Mindstorm Segway (phone control) - video

GoPiGo mobile robot

- Popular educational robot platform developed by Dexter Industies in 2014, since 2019 owned by Modular Robotics
- Controlled by a Raspberry Pi 3
- Dexter OS (preinstalled) or Raspbian OS (preferred)
- Wifi, Ethernet, USB communication
- Two DC motors, large range of possible sensors (distance, accelerometer/gyro, camera, ...)
- Suitable for exploring vision, learning, sensor fusion, planning, control, ...
- \$249 per standard kit (without camera)
- We have four kits with most parts intact

• http://gopigo.io

Projects in learning and control

Vision based path tracking - video

Spot

- Produced by Boston Dynamics
- Cameras, joints, motors, back payload
- (at least) WiFi connection
 (?)
- Python SDK for

programming:

https://dev.bostondynamics.com/readme

Figure: Spot anatomy (source
https://dev.bostondynamics.
com/docs/concepts/about_spot)

Mountable Extensions

Arm

- Allows interaction with environment
- https://www.youtube.com/ watch?v=BMPWxcc-Xbk&ab_ channel= SouthChinaMorningPost

Ice Cream Box

- Provides GNSSS positioning
- Connectable via duct tape
- (There's actually a SWEPOS-connected GNSS-receiver in there.)

MSc project - Build Site Surveying

- MSc Thesis Project by Ola Nilsson
- Goal: Use Spot to survey build site
- Video:

https://www.youtube.com/
watch?v=0PrDsm4PlZg&ab_
channel=0LANILSSON

Presentation: TBD (prel. 24/3 10:30)

Honorable Mentions

(a) Furuta Pendulum

(b) Ball and Beam

(C) ???

(d) Mini Segway

(e) Servo

(f) Flexible Servo and Tanks

Questions? Suggestions?