Chiller Control *Friday Seminar 2022-03-04* Christian Rosdahl

Chiller control

Cooperation with Carrier

Willis Carrier (1876–1950)

Invented modern air conditioning in 1902.

Founded the company in 1915, with six other engineers.

Thanks to

Bryan Eisenhower, Magda Atlevi and Clas Jacobson @ Carrier

What is a chiller?

Energy consumption

"**Energy consumption for space cooling has more than tripled since 1990**, with significant implications for electricity grids, especially during peak demand periods and extreme heat events." — *International Energy Agency, IEA*

Question: Can we improve the efficiency by using machine learning methods?

Space cooling consumes about 1885 TWh per year, which is **about 8% of the world's total electricity consumption**. [1,2]

[1] https://www.iea.org/reports/cooling [2] https://www.statista.com/statistics/280704/world-power-consumption/

Some thermodynamics

p-h diagram

Refrigerant cycle

Evaporator

Simulation model

Complex nonlinear model, with 161 states.

Simulations can be done in Modelon Impact or in Python with an FMU.

Control problem

Actuators:

- Compressor speed
- Expansion valve opening

- **Achieve requested out-water temp**
- **Maximize efficiency** (COP)
	- Correlated to refrigerant level in evaporator
- Satisfy constraints such as
	- Pressure limits in compressor
	- Actuator limitations

Controller

System inputs:

- Compressor speed
- Expansion valve opening

System outputs:

- Evaporator LWT
- Evaporator level

with PI-controllers $C_1(s)$ and $C_2(s)$, where *G(s)* is a linearization of the system

Controller structure:

$$
C(s) = G^{-1}(0) \begin{bmatrix} C_1(s) & 0 \\ 0 & C_2(s) \end{bmatrix}
$$

Decoupled system *G*(*s*)*G*−¹ (0)

$$
C_1(s) = 0.1 \left(1 + \frac{1}{s} \right), \quad C_2(s) = 1 \left(1 + \frac{1}{5s} \right)
$$

Chosen PI-controllers:

Controller tests

Controller performance for reference changes (eLWT and evap level) **and disturbances**

Problem: The evaporator level is not measurable

Possible solutions:

1. Add an expensive sensor 2. Use other measurement signals for feedback instead 3. Use other measurement signals to estimate the level

Alternative feedback signals:

- Leaving temperature difference (LTD) = LWT – leaving refrigerant temp
- Subcooling

Level measurement problem

Possible solutions:

1. Add an expensive sensor 2. Use other measurement signals for feedback instead 3. Use other measurement signals to estimate the level

- **Use a controller based on the level and estimate the level from measurable variables by e.g.**
- Random Tree Regressor
- Nearest Neighbor
- Support Vector Machines
- SVM (with and without kernels)
	- Gaussian Processes
	- Other methods?

Level measurement problem

- Leaving temperature difference (LTD) = LWT – leaving refrigerant temp
- Subcooling

Problem: The evaporator level is not measurable

Alternative feedback signals:

Questions

- How to best generate training data?
- Which signals are most important?

Results from control with LTD

Feedback term added to counteract subcooling exceeding -0.5

Works well in this scenario.

Future work

- How is the COP (efficiency) affected by different control settings (different feedback signals, parameter values, etc.)?
- What sensors are worth to add?
- Can we optimize the control adaptively, e.g. by some kind of dual control?

Thanks for listening!