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Lossless systems

Used for describing transportation of physical commodities

For example Power systems and other transportation

systems

G(s)+G(−s)T = 0, i.e. the Nyquist curve is only on the

imaginary axis.

The poles and zeros are only on the imaginary axis and

interchanging.
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State-space description of a lossless system

ẋ = Ax +B(u +wu), x(0) = 0,

z =
[

C D
0 I

][
x
u

]
y =C x +D(u +wu)+wy ,

(1)

and

ẋK = AKxK +BK y, xK(0) = 0,

u =CKxK +DK y,
(2)

Denote the closed-loop transfer function from w to z as defined

by equations (1) and (2) as Tzw (s). Find

γ∗• = inf{γ : ||Tzw (s)||• < γ},

where || · ||• denotes either the H2 or H∞ norm.
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Main theorem

Assume that A, B , C , and D are defined as in the previous slide,

and that the pair (A,B) is controllable. If there exists a positive

definite P such that

PA+ ATP = 0, PB =C T, and D +DT = 0,

then in the H2 case, γ∗H2
=p

2tr(C B),

and in the H∞ case, γ∗H∞ =p
2.

Modifying the problem to allow for nonlinear control laws will

not reduce γ∗H2
and γ∗H∞ . The theorem gives a fundamental

limit on achievable performance over all causal control laws,

not just finite dimensional linear-time-invariant control laws

in the form of equation (2)
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Implications for power systems

In the absence of damping, after linearisation, the swing equation

power system model is described by the differential-algebraic

equations

Mk θ̈k = pN,k +uk +wu,k ,

[
θk (0)
θ̇k (0)

]
= 0, k ∈ {1, . . . ,n},[

pN

0

]
=−

[
Ka Kb

K T
b Kc

][
θ

θint

]
.

The Schur complement of K gives the Kron reduced lapalcian:

Kred = Ka −KbK −1
c K T

b , which can be factored as Kred = LLT, where

L ∈Rn×n−1

ẋ =
[

0 −M−1L
LT 0

]
x +

[
M−1

0

]
(u +wu), x(0) = 0,

y = [
I 0

]
x +wy .

(3)
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The main theorem with the power system model

γ∗H2
=

√︁
2tr(C B) =

√︄
2

(
1

M1
+·· · + 1

Mn

)
γ∗H∞ =

p
2

γ∗H2
is highly affected by the inertia constants.

γ∗H∞ doesn’t depend on any process parameter

With more renewables like solar and wind power introduced

The total inertia will decrease.
Some nodes will have very little inertia.
More stochastic disturbances are introduced
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Case study with the optimal controllers

Form the proof of γ∗H• the optimal controllers fall out. These are:

For the H2-norm: K (s) =−C (sI − A+2BC )−1B

For the H∞-norm: K (s) =−p2I

Defining the gains form local disturbance w̃k to local output z̃k as

γH2,i k = ||Tz̃i w̃k (s)||H2 γH∞,i k = ||Tz̃i w̃k (s)||H∞

where

w̃k =
[

wu,k

wy,k

]
and z̃k =

[
C x +Duk

uk

]
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Case study and results
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Lumped models

3. Conventional

2. Wind/

solar

4. Hydro

5. Hydro

6. Load

7. Load

8. Load 1. Wind/solar

9. Load

10. Load

In power systems it is

common to work with

aggregated models.

In our case this corresponds

to lumping the clusters to 1

equivalent node.
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γH2,i k is reduced while γH∞,i k

is not.
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Conclusions

For a state space representation of a lossless system the H2

norm of a disturbance affect on the output is given by

γ∗H2
=p

2tr(C B), and for the H∞ norm it is γ∗H∞ =p
2.

In a lossless power system model, the effects are highly local

both in H2 and H∞.

The largest effects of disturbances are seen in nodes with

small inertia, such as renewables like solar and wind, but

these effects do not spread in any major sense to other

nodes or clusters.

Johan Lindberg Fundamental limitations on the control of lossless systems



Questions?
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