Representation and Estimation of the Hyperstate in Dual Control Friday Seminar 2021-02-26 **Christian Rosdahl**

- Goal: Control dynamical system with uncertainties
- Certainty Equivalence Control
 - Requires good parameter estimates
 - No probing
- **Dual Control**:

Dual Control

Find good long-term control by balancing exploration and exploitation

General problem

Given system:

Goal: Select u_k to minimize cost J, **Hyperstate**: $\xi_k = \mathbb{P}(x_k, \theta_k \mid \mathcal{D}_k)$ **Problem:** Find control law $u_k = \pi(\xi_k)$ to minimize cost

$$J(u_{k:k+T-1},\xi_k) = \mathbb{E}\left\{ \left| \sum_{j=k}^{k+T-1} c(x_{j+1},u_j) \right| \xi_k \right\}$$

using
$$\mathcal{D}_k = \{y_k, u_{k-1}, y_{k-1}, u_{k-2}, \dots\}$$

Bellman Equation

Problem: Find control law $u_k = \pi(\xi_k)$ to minimize cost J Value function:

Bellman Equation: $V_{\tau}(\xi_k) = \min \mathbb{E}\{c(x_{k+1}, u_k) + V_{\tau-1}(\xi_{k+1}) \mid \xi_k\}, \quad \tau = 1, 2, ..., T$

Solution: $u_k = \pi(\xi_k) := \operatorname{argmin} Q_T(\xi_k, u_k)$ \mathcal{U}_k

But the Bellman Equation can't be solved exactly.

- Tunction: $V_{\tau}(\xi_k) = \min_{u_k, \dots, u_{k+\tau-1}} \mathbb{E} \left\{ \left. \sum_{j=k}^{k+\tau-1} c(x_{j+1}, u_j) \right| \xi_k \right\}$ Action-value function: $Q_T(\xi_k, u_k) := \mathbb{E} \{ c(x_{k+1}, u_k) + V_{T-1}(\xi_{k+1}) \mid \xi_k \}$

End-Goal

Find algorithm to approximate $Q_T(\xi_k, u_k)$ from ξ_k and u_k

Input can then be chosen as $u_k = \pi(\xi_k) := \operatorname{argmin} \hat{Q}_T(\xi_k, u_k)$

 \mathcal{U}_k

Hyperstate transition model

We need a model for $\xi_k \rightarrow \xi_{k+1}$

Example system

$$\begin{aligned} x_{k+1} &= \operatorname{sat}_{10}(x_k + u_k + w_k) \\ y_k &= |x_k| + e_k, \end{aligned} \qquad \begin{array}{c} ++++ \\ -10 \end{array}$$

all signals are integers

Example system: x_k to y_k

Example system: y_k to x_k

Example system: y_k to x_k

 $U_k = 0$

 $U_{k+1} = ?$ \leftarrow

Hyperstate representation

Gaussian mixture model

Can be represented by the vector $\hat{\xi}_k = [\lambda, \mu_1, \mu_2, \sigma_1, \sigma_2]$

- $\hat{\xi}_k(x;\lambda,\mu,\sigma) = \lambda f(x;\mu_1,\sigma_1) + (1-\lambda)f(x;\mu_2,\sigma_2), \quad \text{where} \quad f(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}.$

Simulation

Hyperstate transition model

Trained with 5600 samples

Worst cases

Hyperstate transition model

Trained with 5600 samples

Average cases

Problem with transition model

$$\hat{\xi}_k = [\lambda, \mu_1, \mu_2, \sigma_1, \sigma_2]$$

is not exactly known. Previous estimation from model is used.

Improved hyperstate model

Reinforcement learning algorithm

Idea: Use RL with hyperstate estimate $\hat{\xi}_k$ as state to find $\hat{Q}_T(\xi_k, u_k) \xi_k$

Example: Q-learning with NN as Q-function approximator

- Moving target: use Q-values to approximate new Q-values
- Many tricks needed
- Many parameters to choose

Reinforcement learning problems

Some nice work tools

For taking notes:

https://www.notion.so/

For version control with Jupyter: -jupy +text

https://github.com/mwouts/jupytext