Control of an exponential disturbance

a semi-simple problem

Ola Johnsson

Department of automatic control Lund university

Outline

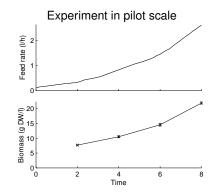
The problem

A solution

Proving the solution

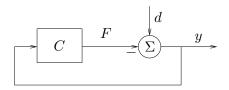
The problem - motivating background

- Fed-batch process.
- Exponential growth is expected and desired.
- Tracking to keep up with feed demand.

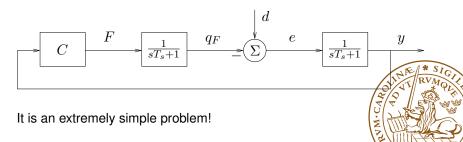


The problem - modelled

Simplest possible setup:



Setup including dynamics:



Solving the problem

We want a simple solution to this simple problem!

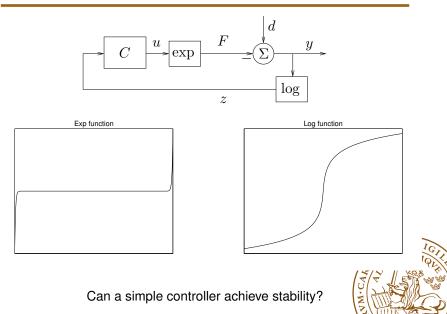
- The disturbance is the exponential of a ramp.
- Can perhaps be "counteracted" by logarithmizing the measurement?

 $z = \operatorname{sign}(y) \log(|y| + 1)$

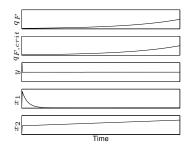
Maybe we can go full circle by using an exponential on the control signal?

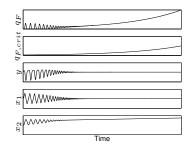
$$F = \operatorname{sign}(u)(\exp(|u|) - 1)$$

Modified set-up



Simulated solutions





Simplest possible setup:

 $u = K_c \frac{sT_c + 1}{s^2 T_c}$

Setup including dynamics: $u = K_c (\frac{sT_c+1}{sT_c})^2$ for $T_c > T_s$

Case closed? (Hint: no)

Proof of stability

- Nice simple solution to a simple problem.
- We want a proof of stability.
- Maybe the proof is just as simple? (Hint: no again)

What is so difficult?

We start by keeping it simple:

- Setup without process dynamics.
- Only one controller zero ($u = K_c \frac{sT_c+1}{s^2T_c}$).
- Only positive values considered, no need for sign and abs functions.

•
$$F = exp(u)$$
 rather than $F = exp(u) - 1$.

$$y = \exp(\mu t) - F$$

$$\dot{x}_1 = \log(y+1)$$

$$\dot{x}_2 = x_1$$

$$F = \exp(K_c(T_c x_1 + x_2))$$

Convergence to a solution?

The system becomes

$$\dot{x}_1 = \log(\exp(\mu t) - \exp(K_c(T_c x_1 + x_2) + 1))$$
$$\dot{x}_2 = x_1$$

For y = 0, we get $\mu t = K_c(T_c x_1 + x_2)$ (and $\dot{x}_1 = 0$). And hence

$$x_1 = \mu/K_c$$

$$x_2 = \mu/K_c(t - T_c)$$

Lyapunov function to show convergence to this trajectory? No luck so far.

How to prove it?

- Simple methods? Would of course be ideal, maybe I have missed something?
- Less simple methods? (Contraction theory suggested by Anders Rantzer)
- Either way, a proof of stability would almost certainly be publishable.
- Perhaps the audience has some ideas?

