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What is contraction?

Nonlinear system
ẋ = f(x), x ∈ C ⊂M (1)

Contraction on C
All solutions in C converge toward each other.

Formal definition:
1 Asymptotic contraction or (IAS):

d(X(t, x1), X(t, x2))→ 0, ∀t ≥ 0, x1, x2 ∈ C

2 Exponential contraction or (IES)

d(X(t, x1), X(t, x2)) ≤ Ke−λtd(x1, x2), ∀t ≥ 0, x1, x2 ∈ C
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A remark on terminology

incremental asymptotic stability
(IAS)

⇕

asymptotic contraction

incremental exponential stability
(IES)

⇕

exponential contraction
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Contraction vs. Stability

Contraction: target solution may be
unknown Stability: equilibrium as target solution
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Why do we need contraction?
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Synchronization as contraction

1 2 3 4

)( 1xu )( 2xu)( 2xu )( 3xu )( 3xu )( 4xu

Σ :


ẋ1 = f(x1)

ẋ2 = f(x2)− u(x2) + u(x1)

ẋ3 = f(x3)− u(x3) + u(x2)

ẋ4 = f(x4)− u(x4) + u(x3)

ẋ = f(x)− u(x) IES ⇒ Σ synchronizes
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Contraction based observer

Σ :

{
ẋ = f(x), x ∈ Rn

y = h(x), y ∈ Rm , y: the measurement.

Contraction-based observer:

∃g ∈ C1, s.t. f(x) = g(x, h(x))

and:
ẋ = g(x, y) IES (uniform in y)

⇓

Observer: ˙̂x = g(x̂, y).
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Basic question

How to analyze incremental stability? ( = contraction analysis)
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Set stability ⇒ incremental stability
Euclidean space,

Σ :

{
ẋ = f(x)

ż = f(z)
, x, z ∈ Rn

Diagonal set: A = {(x, z) ∈ R2n|x = z}.

A exponentially stable ⇒ ẋ = f(x) IES.

↓

LF-based criteria ⇒ incremental stability. 1

Remarks
(1). Construction of a set LF relies on distance |x− y|, sometimes difficult
to calculate, e.g. systems on manifolds.
(2). System Σ contains two copies of the same system: redundancy.

1D. Angeli, “A Lyapunov approach to incremental stability properties,” IEEE Transactions on Automatic Control, vol. 47,
no. 3, pp. 410–421, 2002.
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Differential contraction analysis

virtual displacement δx 

two close trajectories virtual velocity

1x

2x

x1(t) and x2(t) sufficiently close

ẋ1 − ẋ2 = f(x1)− f(x2)

≈ ∂f(x)

∂x
(x1 − x2),

The “error dynamics” x1 − x2 is characterized by ∂f (x)
∂x .
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W. Lohmiller and J.J. Slotine2:

virtual dynamics: δẋ =
∂f(x)

∂x
δx.

virtual dynamics ES ⇒ ẋ = f(x) IES

In particular: ∃P > 0, c > 0 s.t. P
∂f(x)

∂x
+

∂T f(x)

∂x
P ≤ −cI, ∀x ∈ Rn

Remarks
(1) Advantage: no need of system augmentation or distance.
(2) The mathematical meaning behind this idea needs to be further justified:
approximation, infinitesimal analysis, virtual dynamics.

2W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear systems,” Automatica, vol. 34, no. 6, pp.
683–696, 1998
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Finsler-Lyapunov functions
F. Forni and R. Sepulchre:3

Theorem
If ∃ a “Finsler-Lyapunov function” V : TM → R+, satisfying, for all
(x, δx) ∈ TM ,

c1|δx|p ≤ V (x, δx) ≤ c2|δx|p, (2)
∂V (x, δx)

∂x
f(x) +

∂V (x, δx)

∂δx

∂f(x)

∂x
δx ≤ −α(V (x, δx)). (3)

for some c1, c2 > 0, p ≥ 1, then the system is

incrementally asymptotically stable (IAS), if α is class K.

incrementally exponentially stable (IES), if α(s) = λs, λ > 0.

Remarks
(1). Introduce new objects to study contraction.
(2). Provide more rigorous interpretation to differential contraction analysis.
(3). Limitations: local results; geometric meaning not quite clear; sufficient.

3F. Forni and R. Sepulchre, “A differential Lyapunov framework for contraction analysis,” IEEE TAC, vol. 59, no. 3, pp.
614–628, 2014.
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Why geometric contraction analysis

Growing needs of intrinsic methods (intrinsic observers in particular) for systems
on manifolds:

Rigid body dynamics: SO(3), SE(3).

Mechanical systems: Rm × (S1)k.

Quantum systems: SU(3) etc.

Benefits of intrinsic (coordinate free) results: mathematical beauty (personal
taste :)

Limitation seen from the literature:

Results mainly focused on Euclidean space.

Local results are sometimes cumbersome for theoretical analysis.
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Objectives

1 Gain the geometric understandings of contraction.

2 Develop framework for intrinsic contraction analysis on manifolds.
3 Solve some challenging problems using intrinsic contraction analysis.
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Ready? Go!
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Stability analysis of trajectories on manifolds

System: ẋ = f(t, x, u)

A trajectory: q(·), s.t. q̇(t) = f(t, q(t), u∗(t)), u∗ an input.

Task

Analyze the stability of q.

If M = Rn, define e = x− q(t) ⇒ error dynamics:

ė = f(t, e + q(t), u∗(t))− q̇(t)

On manifold: x− q(t) no longer makes sense; no standard error; depends
heavily on the choice of error dynamics, often non-trivial!
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Lifting technique: linearization on manifolds

0q

x
)(tq

))(,;(* xxtt  0

Step 1: let δx(t) = ϕ∗(t; t0, x)(δx) = Lie(δx)(t; t0).
Step 2: Γ(t) = (q(t), δx(t)): curve in TM .
Step 3: The complete lift of f(t, x) along q(·):

f̃(t, q(t), δx(t)) =
dΓ(t)

dt
∈ T(q(t),δx(t))TM , ∀δx ∈ Tq0M

complete lift system ⇐⇒ linearization of error dynamics
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The vector field f̃ defines a system:

v̇ = f̃(t, q(t), v), v ∈ Tq(t)M (4)

- System is fibre-wise linear!
- v1, v2 ∈ q∗TM solve (4) ⇒ so is α1v1 + α2v2, α1, α2 ∈ R.

Theorem (D. Wu et al. 2019)
Assume that (4) is the complete lift along q of the system

ẋ = f(t, x). (5)

(q LES) ⇒ (CL system ES).

Periodic system, q bounded, then (CL system ES) ⇒ (q LES)
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Necessity: (q LES) ⇒ (CL system ES)

)( 0tq

)(s

)0(')( 0 tv

))(,;( 0 stt 

)(tq

)(tv

))((exp )( tsvtq

1c

2c

3c

Show:

|v(t)| ≤ ke−λ(t−t0)|v(t0)|

γ: geodesic starting at q(t0).
c1: geodesic of length s|v(t)|.
c2: flow of γ : [0, s] → M .
c3: geodesic ϕ(t; t0, γ(s)) to
expq(t)(sv(t)).

s|v(t)| = ℓ(c1) = d(q(t), expq(t)(sv(t)))

≤ ℓ(c2) + ℓ(c3)

ℓ(c2) ≤ ks|v(t0)|e−λ(t−t0)

It suffices to show

ℓ(c3)

s
=

d(ϕ(t; t0, γ(s)), expq(t)(sv(t)))

s
→ 0

as s → 0+.
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Sufficiency: (CL syst. along q ES) ⇒ q LES.

CL system ES + fibre-wise linear

⇓

∃V : R+ × q∗TM → R+ s.t.
{

c1|v|2 ≤ V (t, v) ≤ c2|v|2

Lf̃ V (t, v) ≤ −c3|v|2.
(6)

Extend the V to D ← a bounded open neighborhood containing q(·)

⇓

The system is IES on D

⇓

q(·) LES

(UPSacaly & HIT) Contraction Analysis: a Geometric Viewpoint 22 / 52



Corollaries

Corollary
(1) If q(·) is a trajectory of ẋ = f(x), and ∃k > 0 such that

⟨∇vf(x), v⟩|x=q(t) ≤ −k⟨v, v⟩, (7)

∀v(t) ∈ Tq(t)M , t ≥ 0, then q(·) is LES.
(2) For autonomous system, ∄ nontrivial bounded LES trajectory.

(1): No need to calculate complete lift.

(2): Limit cycle of autonomous system cannot be LES.
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Lift along q

0q

x
)(tq

))(,;(* xxtt  0

Γ(s) = (q(s), ϕ∗(s; t, x)(δx))

f̃(t, q(t),δx) =
dΓ(s)

ds

∣∣∣∣
s=t

∈ T(q(t),δx)TM

⇓

v̇ = f̃(t, v), v(t) ∈ Tq(t)M (8)

Lift to TM

x

x
),;( 0 xtt

))(,;( 0* xxtt 

integral curve of  f(x)

Γ(s) = (ϕ(s; t, x), ϕ∗(s; t, x)(δx))

f̃(t, x,δx) =
dΓ(s)

ds

∣∣∣∣
s=t

∈ T(x,δx)TM

⇓

v̇ = f̃(t, v), v(t) ∈ TM (9)

(UPSacaly & HIT) Contraction Analysis: a Geometric Viewpoint 24 / 52



Lift along q

0q

x
)(tq

))(,;(* xxtt  0

Γ(s) = (q(s), ϕ∗(s; t, x)(δx))

f̃(t, q(t),δx) =
dΓ(s)

ds

∣∣∣∣
s=t

∈ T(q(t),δx)TM

⇓

v̇ = f̃(t, v), v(t) ∈ Tq(t)M (8)

Lift to TM

x

x
),;( 0 xtt

))(,;( 0* xxtt 

integral curve of  f(x)

Γ(s) = (ϕ(s; t, x), ϕ∗(s; t, x)(δx))

f̃(t, x,δx) =
dΓ(s)

ds

∣∣∣∣
s=t

∈ T(x,δx)TM

⇓

v̇ = f̃(t, v), v(t) ∈ TM (9)

(UPSacaly & HIT) Contraction Analysis: a Geometric Viewpoint 24 / 52



Lift along q

0q

x
)(tq

))(,;(* xxtt  0

Γ(s) = (q(s), ϕ∗(s; t, x)(δx))

f̃(t, q(t),δx) =
dΓ(s)

ds

∣∣∣∣
s=t

∈ T(q(t),δx)TM

⇓

v̇ = f̃(t, v), v(t) ∈ Tq(t)M (8)

Lift to TM

x

x
),;( 0 xtt

))(,;( 0* xxtt 

integral curve of  f(x)

Γ(s) = (ϕ(s; t, x), ϕ∗(s; t, x)(δx))

f̃(t, x,δx) =
dΓ(s)

ds

∣∣∣∣
s=t

∈ T(x,δx)TM

⇓

v̇ = f̃(t, v), v(t) ∈ TM (9)

(UPSacaly & HIT) Contraction Analysis: a Geometric Viewpoint 24 / 52



Theorem (D. Wu et al. 2020)

Consider the system ẋ = f(t, x), a K function α, and the CL system

v̇ = f̃(t, v), v ∈ TM

Let V be a candidate Finsler-Lyapunov function, i.e., ∃α1, α2 ∈ K∞ such
that ∀(t, v) ∈ R+ × TM :

α1(|δx|) ≤ V (t,x, δx) ≤ α2(|δx|) (10)
Lf̃ V (t, v) ≤ −α(V (t, v)) (11)

then the system is
incrementally asymptotically stable (IAS) if α is K;
incrementally exponentially stable (IES) if α(s) = λs, λ > 0.

Remarks
(1). The theorem is intrinsic
(2). Recover F. Forni and R. Sepulchre’s results.
(3). α1 and α2 only K∞, even for IES.
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Recall4

Theorem
If ∃ a “Finsler-Lyapunov function” V : TM → R+, satisfying

c1|δx|p ≤ V (x, δx) ≤ c2|δx|p, ∀(x, δx) ∈ TM , (12)

∂V (x, δx)

∂x
f(x) +

∂V (x, δx)

∂δx

∂f(x)

∂x
δx ≤ −α(V (x, δx)). (13)

for ∀(x, δx) ∈ TM and some c1, c2 > 0, p ≥ 1, then the system is
incrementally asymptotically stable (IAS), if α is class K.
incrementally exponentially stable (IES), if α(s) = λs, λ > 0.

4F. Forni and R. Sepulchre, “A differential lyapunov framework for contraction analysis,” IEEE Transactions on Automatic
Control, vol. 59, no. 3, pp. 614–628, 2014.
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In local coordinate

Lemma
Let {x, v} be the local coordinate of TM , and TTM is spanned by

{
∂

∂xi , ∂
∂vi

}
.

Then f̃(t, v) is expressed as

f̃ =

 f(t, π(v))

∂f
∂x (t, π(v))v

 .

The CL of ẋ = f(t, x) now reads
ẋ = f(t, x)

δẋ =
∂f(t, x)

∂x
δx.

(14)

And Lf̃ V :

Lf̃ V (x, δx) =
∂V (x, δx)

∂x
f(t, x) +

∂V (x, δx)

∂δx

∂f(t, x)

∂x
δx (15)
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Converse Theorem
Sufficient condition for contraction obtained. Is it also necessary?

⇕

Does there exist weaker condition to guarantee contraction?

⇕

Is Finsler-Lyapunov function the “right” measure of contraction?

Answer: YES!
Theorem (D. Wu et al. 2020)

Consider ẋ = f(t, x), x ∈M , f ∈ C1, |P q
p f(t, p)− f(t, q)| ≤ Ld(p, q) for all

p, q ∈M and some constant L > 0. Then the system is IES iff there exists a
Finsler-Lyapunov function and c1, c2, k > 0 s.t.

1 There exist constants c1, c2 such that

c1|v|2 ≤ V (t, v) ≤ c2|v|2, ∀(t, v) ∈ R+ × TM

2 There exists constant k > 0 such that
Lf̃ V (t, v) ≤ −kV (t, v), ∀(t, v) ∈ R+ × TM (16)
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A “near perfect” correspondence

Contraction Lyapunov Stability

State space: TM State space: M

Finsler-Lyapunov function Lyapunov function

α1(|δx|) ≤ V (t, x, δx) ≤ α2(|δx|) α1(|x|) ≤ V (t, x) ≤ α2(|x|)

Lf̃ V (t, x, δx) ≤ −α3(|δx|) Lf V (t, x) ≤ −α3(|x|)
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New insights obtained!

But wait, what can we do with this?
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Krasovskii Theorem and contraction

Classical Krasovskii Thm

Syst ẋ = f(x), if ∃ P > 0, k > 0, s.t.

P
∂f

∂x
+

∂T f

∂x
P ≤ −kI (17)

(Demidovich condition), f(0) = 0, then
a Lyapunov func can be constructeda:

V (x) = fT (x)Pf(x), s.t. V̇ ≤ −kV ,
aH. K. Khalil, Nonlinear Systems, Prentice Hall (2002).

Contraction viewpoint

If (17) holds, a FLF can be constructed!

W (x, δx) = δxT Pδx, (18)
Lf̃ W (x, δx) ≤ −kW (x, δx) (19)

(18) + (19) ⇒ IES ⇒ 0 ES

What is the LF?

⇐=

Question

(IES) + (∃ equilibrium) =⇒ How to construct LF?
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A generalized Krasovskii Theorem

Theorem (D. Wu et al 2020)
If the system ẋ = f(x) IES and f(0) = 0, with a FLF: V (x, δx), then

The system is ES;
If ∃ C1 vector field h, with h(x) = 0 iff x = 0 and that [f , h] = 0,
(in particular h = f)

W (x) = V (x, h(x))

is a Lyapunov function for the system.

Remarks
h not necessarily f ;
holds on manifolds;
need not be quadratic.
connection to switch system: commutativity implies GES under
arbitrary switching!
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If the system ẋ = f(x) IES and f(0) = 0, with a FLF: V (x, δx), then

The system is ES;
If ∃ C1 vector field h, with h(x) = 0 iff x = 0 and that [f , h] = 0,
(in particular h = f)

W (x) = V (x, h(x))

is a Lyapunov function for the system.

Remarks
h not necessarily f ;
holds on manifolds;
need not be quadratic.
connection to switch system: commutativity implies GES under
arbitrary switching!

(UPSacaly & HIT) Contraction Analysis: a Geometric Viewpoint 32 / 52



A tricky proof in Euclidean space
Theorem (D. Wu et al 2020)
If the system ẋ = f(x) IES and f(0) = 0, with a FLF: V (x, δx), then

The system is ES;
If ∃ C1 vector field h, with h(x) = 0 iff x = 0 and that [f , h] = 0,
(in particular h = f)

W (x) = V (x, h(x))

is a Lyapunov function for the system.

Proof in Euclidean space

Ẇ =
∂V

∂x
f(x) +

∂V

∂δx

∂h

∂x
f(x)

=
∂V

∂x
f(x) +

∂V

∂δx

∂f

∂x
h(x) (since ∂h

∂x
f =

∂f

∂x
h)

≤ −kV (x, h(x)) (since ∂V

∂x
f +

∂V

∂δx

∂f

∂x
δx ≤ −kV )

= −kW
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Local property (D. Wu et al. 2021)

Recall that to guarantee IES, the following needs to be hold for all
(x, δx) ∈ TM ,

∂V

∂x
f(x) +

∂V

∂δx

∂f

∂x
δx ≤ −kV , (20)

This can be relaxed to

∀|δx| < c, (x, δx) ∈ TM

where c is any positive constant.

Local implies global!

Remarks
(1). Not trivial from (20) which is not linear in δx!
(2). Key to proof: reparametrize geodesics.
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IES and LES of trajectories

LES
complete lift along trajectory

IES
complete lift everywhere

Similar tool should imply some kind of equivalence!

Theorem (D. Wu et al. 2020)

Consider the system
ẋ = f(t, x) (21)

which is autonomous or periodic, q is a bounded solution. Then q is LES if
and only if ∃ an open invariant neighborhood of q, on which the system is
IES.

LES of trajectories ∼ IES on a region

Particular case: x∗ is LES iff ∃U ∋ x∗ s.t. the system is IES on U . 5

5F. Forni, A. Mauroy, and R. Sepulchre, “Differential positivity characterizes one- dimensional normally hyperbolic
attractors,” arXiv preprint arXiv:1511.06996, 2015

(UPSacaly & HIT) Contraction Analysis: a Geometric Viewpoint 35 / 52



IES and LES of trajectories

LES
complete lift along trajectory

IES
complete lift everywhere

Similar tool should imply some kind of equivalence!

Theorem (D. Wu et al. 2020)

Consider the system
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Volume shrinking

Demidovich condition
P

∂f

∂x
+

∂T f

∂x
P ≤ −cI.

on Riemannian manifolds
⟨∇vf , v⟩ ≤ −c|v|2, (22)

Theorem (D. Wu et al. 2021 )
If the system ẋ = f(t, x) satisifies (22), then for any open set D with C1

boundary, vol(D) decreases exponentially.

Proof. (valid on Riemannian manifold).

By transport formula, d
dtvol(Dt) =

∫
Dt

(divf)vol

divf = tr(∇f)
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Proof in Euclidean space

Proof.
In Euclidien space

d

dt
vol(Dt) =

∫
Dt

div fdx (23)

=
∫

Dt

tr
(

∂f

∂x

)
dx ≤

∫
Dt

−nc

2a
dx (24)

= −nc

2a
vol(Dt) (25)

(24) is true since

P
∂f

∂x
+

∂T f

∂x
P ≤ − c

a
P , (26)

implies Re(σ(∂f/∂x)) ≤ −c/(2a) (weaker than contraction!)
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Extremum seeking on Riemannian manifolds

Assume the syst ẋ = f(x) on M satisfies

⟨∇vf , v⟩ ≤ −c|v|2, ∀v ∈ TU (27)

on U ,

then the system has a unique ES equilibrium x∗ (Banach contraction).

Task 1

Find x∗ numerically.

Algorithm: xk+1 = expxk
αf(xk), α > 0 , exp: Riemannian exponential map.

Task 2

Find the optimal α s.t. the algorithm converges at the fastest rate.
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x y

)(s

)(exp xfx )(exp yfy 

1c

2c

show x 7→ expx αf (x) is Banach contraction.

estimate d(expx(αf (x)), expy(αf (y))).

γ: geod. joining x to y, length ℓ.

c1: geod. expx(αf (x)) to expy(αf (y))

c2: image of γ.

d(expx(αf(x)), expy(αf(y))) ≤
∫ ℓ

0

∣∣∣∣ d

ds
expγ(s)(αf(γ(s)))

∣∣∣∣ ds (28)

d
ds expγ(s)(αf(γ(s))) is the Jacobi field!

i.e., the solution to

J ′′
s (r) + R(φ′

s(r), Js(r))φ
′
s(r) = 0

Js(0) = γ′(s), J ′
s(0) = ∇γ′f(γ(s))

Curvature tensor comes into play!
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Estimation of the Jacobi field∫ ℓ

0

⟨Js(α), Js(α)⟩ ds = 2

∫ ℓ

0

∫ α

0

〈
J

′
s(r), Js(r)

〉
drds +

∫ ℓ

0

|Js(0)|2
ds

= 2L +

∫ ℓ

0

|γ′(s)|2
ds = 2L + ℓ

L =

∫ ℓ

0

∫ α

0

〈
J

′
s(r), Js(r)

〉
drds

=

∫ ℓ

0

∫ α

0

(∫ r

0

d

dt

〈
J

′
s(t), Js(t)

〉
dt +

〈
J

′
s(0), Js(0)

〉)
drds

=

∫ ℓ

0

∫ α

0

(∫ r

0

〈
J

′′
s (t), Js(t)

〉
+

〈
J

′
s(t), J

′
s(t)

〉
dt +

〈
J

′
s(0), Js(0)

〉)
drds

=

∫ ℓ

0

∫ α

0

∫ r

0

(
〈

−2R(φ′
s(t), Js(t))φ

′
s, Js(t)

〉
+ U(t, s) +

〈
J

′
s(0), Js(0)

〉
)dtdrds

≤

∫ ℓ

0

∫ α

0

(∫ r

0

U(0, s)dt

)
drds +

∫ ℓ

0

∫ α

0

〈
J

′
s(0), Js(0)

〉
drds

≤
1
2

α
2

∫ ℓ

0

U(0, s)ds − c

∫ ℓ

0

∫ α

0

drds (29)
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Calculation results
For non-negative constant curvature K manifold

d(expx(αX(x)), expy(αX(y))) ≤
∫ ℓ

0

∣∣∣∣ d

ds
expγ(s)(αX(γ(s)))

∣∣∣∣ ds

≤
√

ℓ

√∫ ℓ

0
⟨Js(α), Js(α)⟩ ds

≤ ℓ
√

1− 2cα + α2(1 + K)L2

=
√

1− 2cα + α2(1 + K)L2d(x, y) (30)

c: the contraction rate of IES
K: the curvature
L: Lipschitz constant on Riemannan manifolds

optimal α : α∗ =
c

(1 + K)L2 , contraction rate−1 =

√
1− c2

(1 + K)L2
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Speed observer of Lagrangian systems

Hor d’oeuvre
Newton’s 2nd law for free motion:

q̈ = 0, (31)

Matrix form: 
d

dt

q

v

 =

0 1

0 0


q

v


y = q

(32)

Standard Luenberger observer:{
˙̂q = v̂− α(q̂− q)

˙̂v = −β(q̂− q)
, α, β > 0 (33)
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Moving from Euclidean to Riemannian

System: ∇q̇ q̇ = 0 or

q̇ = v, ∇q̇v = 0, q ∈M , v ∈ TqM (34)

Speed observer: reconstruct v using q. Consider 6

{ ˙̂q = v̂− α grad F (q̂, q)

∇ ˙̂qv̂ = −β grad F (q̂, q)

+ R(v̂, grad F )v̂

(35)

F : square distance, R: curvature tensor, grad: gradient

Task

Analyze the convergence of the observer.

6N. Aghannan and P. Rouchon, “An intrinsic observer for a class of lagrangian systems,” IEEE Transactions on Automatic
Control, vol. 48, no. 6, pp. 936–945, 2003.
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Contraction analysis in local coordinates

N. Aghannan and P. Rouchon 7

7N. Aghannan and P. Rouchon, “An intrinsic observer for a class of lagrangian systems,” IEEE Transactions on Automatic
Control, vol. 48, no. 6, pp. 936–945, 2003.
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Intrinsic LES analysis = (Contraction analysis)

Observer:
{

˙̂q = v̂− α∇F (q̂, q)

∇ ˙̂q v̂ = −β∇F (q̂, q) + R(v̂,∇F )v̂

Rewrite the observer as

∇ ˙̂q
˙̂q = −α∇ ˙̂q∇F − β∇F + R( ˙̂q,∇F )( ˙̂q + α∇F ) (36)

=⇒ q(·) a solution to (36).

Task 2

Analyze the LES of q(·)
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LES analysis of q(·)

),(ˆ tsq

)(tq

variation by Lie transport

∇ ˙̂q
˙̂q = −α∇ ˙̂q∇F − β∇F

+ R( ˙̂q,∇F )( ˙̂q + α∇F )
(37)

The covariant derivative in the direction of q̂′ (the Lie transport):

∇q̂′∇ ˙̂q
˙̂q =− α∇q̂′∇ ˙̂q∇F − β∇q̂′∇F +∇q̂′ [R( ˙̂q,∇F )( ˙̂q + α∇F )]

=− α∇ ˙̂q∇q̂′∇F − αR( ˙̂q, q̂′)∇F − β∇q̂′∇F

+∇q̂′ [R( ˙̂q,∇F )( ˙̂q + α∇F )]

=− α∇ ˙̂q q̂′ − βq̂′ + R( ˙̂q,∇q̂′∇F ) ˙̂q

=− α∇ ˙̂q q̂′ − βq̂′ + R( ˙̂q, q̂′) ˙̂q,

(UPSacaly & HIT) Contraction Analysis: a Geometric Viewpoint 46 / 52



LES analysis of q(·)

),(ˆ tsq

)(tq

variation by Lie transport

∇ ˙̂q
˙̂q = −α∇ ˙̂q∇F − β∇F

+ R( ˙̂q,∇F )( ˙̂q + α∇F )
(37)

The covariant derivative in the direction of q̂′ (the Lie transport):

∇q̂′∇ ˙̂q
˙̂q =− α∇q̂′∇ ˙̂q∇F − β∇q̂′∇F +∇q̂′ [R( ˙̂q,∇F )( ˙̂q + α∇F )]

=− α∇ ˙̂q∇q̂′∇F − αR( ˙̂q, q̂′)∇F − β∇q̂′∇F

+∇q̂′ [R( ˙̂q,∇F )( ˙̂q + α∇F )]

=− α∇ ˙̂q q̂′ − βq̂′ + R( ˙̂q,∇q̂′∇F ) ˙̂q

=− α∇ ˙̂q q̂′ − βq̂′ + R( ˙̂q, q̂′) ˙̂q,

(UPSacaly & HIT) Contraction Analysis: a Geometric Viewpoint 46 / 52



LES analysis of q(·)

The above calculation results in

D2q̂′

dt2 + α
Dq̂′

dt
+ βq̂′ = 0 (38)

q̂′ the Lie transport along q(t), D
dt the covariant derivative along q(t).

Equation (38) has the following structure

ẍ + αẋ + βx = 0

where α, β > 0, which is ES.

Equip TM with a variant of Sasaki metric
⇓

Complete lift system along q(·) is ES

d((q, v), (q̂, v̂))(t) ≤ kd((q, v), (q̂, v̂))(0)e−λt
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Conclusion and perspective

Conclusion

A geometric framework for contraction analysis: fundamental
theorems, novel characterizations, connection to Lyapunov theory.
Study contraction related practical examples: extremum seeking,
synchronization, observers, robustness of NHIM etc.

Perspective
From theory to practice: analysis → design.
Converse theorem for IAS.
Extreme seeking on non-constant curvature manifold.
Learning: Koopman operator, contracting neural network.
Differential positive system, monotone systems.
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Sketch of the proof
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c1: geodesic from ϕ(t; t0, x1) to
ϕ(t; t0, x2)

c2: flow of the geodesic γ

t 7→
(

ϕ(t; t0, γ(s)), Lie(γ′(s))(t; t0)
)

∈ T M

solution to the CL lift system
+

Lf̃ V ≤ −α(V )

⇓

V (t, Lie(γ′(s))(t; t0)) ≤ β(V (t0, γ′(s)), t − t0)
(39)

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤ ℓ(c2)

≤
∫ ℓ

0
| Lie(γ′(s))(t; t0)|ds

≤
∫ ℓ

0
α−1

1 (V (t, Lie(γ′(s))(t; t0)))ds (40)

(39) + (40) ⇒ IAS
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Finsler-Lyapunov function: a relaxation

Definition (D. Wu et al. 2021)
Given a Finsler structure F on M , a candidate Finsler-Lyapunov function on
U ⊆M is a C1 function V : R+ × TM → R+ satisfying

α1(F (x, δx)) ≤ V (t, x, δx) ≤ α2(F (x, δx)), ∀(t, x, δx) ∈ R+ × TM |U (41)

where α1, α2 are K∞ functions.

Remarks
On Riemannian manifolds, F (x, δx) = |δx|x
In F. Forni and R. Sepulchre 2014, α1, α2 are αi(s) = cis

p for p ≥ 1.

(UPSacaly & HIT) Contraction Analysis: a Geometric Viewpoint 52 / 52


	Stability analysis on Riemannian manifolds
	Conclusion and perspective

