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1. The problem

Time-stepping methods for initial value problem ẏ = f(t, y)

Given an approximation yn ≈ y(tn) compute

yn 7→ yn+1

with time step size h = tn+1 − tn

Work/accuracy trade-off

Don’t use constant step size – put grid points where they
really matter to accuracy
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Adaptive methods

Most ODE solvers are adaptive

Given an error tolerance ε, they try to select the time step hn

so as to make each local error rn = ε

Asymptotic step size – error model (as h→ 0)

rn = ϕnh
k
n

If ϕ is constant, then hn+1 = (ε/rn)1/khn will make rn+1 ≡ ε
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Adaptive methods

Most ODE solvers are adaptive

Given an error tolerance ε, they try to select the time step hn

so as to make each local error rn = ε

Asymptotic step size – error model (as h→ 0)

rn = ϕnh
k
n

If ϕ is constant, then hn+1 = (ε/rn)1/khn will make rn+1 ≡ ε

. . . and numerical analysis stopped thinking, right there. . . !
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2. Control and signal processing

Classical time-step control

hn+1 =

(
ε

rn

)1/k

hn

In logarithmic form

log hn+1 − log hn =−
1

k
(log rn − log ε)

This is plain integrating control

Linear difference equation, log r 7→ log h
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Linear control and signal processing

Signal processing

How to map observed error sequence log r to suitable step
size sequence log h while keeping r ≈ ε

General technique

(q − 1)Q(q) log h = P (q)(log r − log ε)

P,Q polynomial operators in forward shift operator q

New possibilities

Q “autoregressive” part; P “moving average” part
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What step size properties can be achieved?
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Will it have an impact on computations?

Standard, elementary time-step control

hn+1 =

(
ε

rn

)1/k

hn

in logarithmic form is a negative feedback control law

log
hn+1

hn

=−
1

k
log

rn

ε

Actual implementations add safety nets and heuristics
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Will it have an impact on computations?

Standard, elementary time-step control

hn+1 =

(
ε

rn

)1/k

hn

in logarithmic form is a negative feedback control law

log
hn+1

hn

=−
1

k
log

rn

ε

Actual implementations add safety nets and heuristics

. . . so numerical analysis didn’t quite stop thinking, right there!
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Example of actual implementation with heuristics

Typical plot of log(hn+1/hn) vs. log(rn/ε)
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Nonlinear, discontinuous and nonsymmetric!
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How well does it work? Chemakzo problem
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Poor computational stability
Small changes in ε have large effects on output
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What is computational stability?

Continuous data dependence

c · ε ≤ ‖e‖ ≤ C · ε

with log10(C/c)≪ 1
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What is computational stability?

Continuous data dependence

c · ε ≤ ‖e‖ ≤ C · ε

with log10(C/c)≪ 1

How can it be improved?

• Digital filtering of error estimates
• Control theory for time–step selection
• Order selection controller
• Appropriate Newton iteration termination
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What is computational stability?

Continuous data dependence

c · ε ≤ ‖e‖ ≤ C · ε

with log10(C/c)≪ 1

How can it be improved?

• Digital filtering of error estimates
• Control theory for time–step selection
• Order selection controller
• Appropriate Newton iteration termination

⇒ log10(C/c) ≈ 0.05 possible at no extra cost!
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. . . and it works a lot better! Chemakzo problem
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Compare to the standard implementation!
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Revised implementation, Chemakzo problem
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Control theoretic approach

−1

log h log rlog ε Controller

log ϕ

C(q) G(q)

Process

Asymptotic process model

r = ϕhk ⇒ log r = k · log h + log ϕ ; (G(q) = k)

Control law
log h = C(q) · (log ε− log r)
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Closed loop response

Step size response Hϕ(q) : log ϕ 7→ log h

−kHϕ(q) =
k · C(q)

1 + k · C(q)

Error response Rϕ(q) : log ϕ 7→ log r

Rϕ(q) =
1

1 + k · C(q)

Control design Low-pass filter for h and high-pass filter for r
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Step size response for C(q) = P (q)/[(q − 1)Q(q)]

Linear recursion
(
(q − 1)Q(q) + kP (q)

)
log h = −P (q) log ϕ

Elementary control Q ≡ 1; P ≡ 1/k

Convolution filter Q ≡ 1; P ≡ γ < 1/k

I control Q ≡ 1; deg P = 0

PI control Q ≡ 1; deg P = 1

PID control Q ≡ 1; deg P = 2

FIR filter (q − 1)Q(q) + k · P (q) = qm

Autoregressive (AR) Q has zero(s) at q = 1

Moving average (MA) P has zero(s) at q = −1
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A digital filter for step size control

Step size low-pass filter H211b:

hn+1 =

(
ε

rn

)1/(bk) (
ε

rn−1

)1/(bk) (
hn

hn−1

)
−1/b

hn

The filter coefficients are determined by order conditions
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A digital filter for step size control

Step size low-pass filter H211b:

hn+1 =

(
ε

rn

)1/(bk) (
ε

rn−1

)1/(bk) (
hn

hn−1

)
−1/b

hn

The filter coefficients are determined by order conditions

Properties

• Stable for b ∈ [1,∞) with poles at q = 0, 1− 2/b

• 1st order low-pass FIR filter (deadbeat) at b = 2

• Increasing b increases noise suppression

Stolen with Pride – p.18/61



Pole placement
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H211b frequency response on [0.1, π]

log ϕ 7→ k log h log ϕ 7→ log r log r 7→ log h
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On the boundary ∂S of the stability region

The model G(q) = kq−1 is no longer valid

Instead

G∂S(q) = kq−1

(

c1 −
c2

q − 1

)

System identification determines coefficients c1 and c2

Coefficients in a narrow range for large classes of methods

Find controller that can control both G(q) and G∂S(q)!

Proper PI controllers (positive P gain) solve this problem
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Example: modifying ode45 in MATLAB

Step size sequences in chemotaxis problem
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Elementary deadbeat grid in diffusion problem
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PI controlled grid in diffusion problem
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3. Time transformation adaptivity

Substitution t ←→ s

Original solution Transformed solution
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Variable steps via time transformations

Substitution t ←→ s

Original solution Transformed solution

Variable steps ∆t correspond to constant step size ∆s

Useful for “geometric integration” of Hamiltonian systems, problems

with invariants, reversible dynamics
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Grid density control

Time stretching/compression t = Θ(s) with derivative

dΘ

ds
= Θ′(s) =

1

ρ(s)
⇒ dt = ds/ρ

Transformed differential equation ẏ = F (y) ⇒ y′ = F (y)/ρ

Sampling (step size) correspondence

∆t = hn+1/2 = tn+1 − tn = Θ(sn+1)−Θ(sn) ≈
∆s

ρ(sn+1/2)

Constant steps ∆s transform into variable steps ∆t = hn+1/2
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Interaction of discrete flow and step size map

yn−1
• •

yn-
Φh

A single step forward: yn = Φh(yn−1)
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Interaction of discrete flow and step size map

hn−1/2 •

yn−1
• •

yn-
Φh

?

A single step forward: yn = Φhn−1/2
(yn−1)

The discrete flow is parameterized by the actual step size
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Interaction of discrete flow and step size map

Ψy

hn−1/2 • • hn+1/2
-

yn−1
• •

yn-
Φh

? 6

Solution yn determines next step size: hn+1/2 = Ψyn(hn−1/2)

Step size map is parameterized by the solution
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Interaction of discrete flow and step size map

Ψy

hn−1/2 • • hn+1/2
-

yn−1
• •

yn-
Φh

? 6 ?

•
yn+1-

Φh

New step size gives next step forward: yn+1 = Φhn+1/2
(yn)
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Interaction of discrete flow and step size map

Ψy

hn−1/2 • • hn+1/2
-

yn−1
• •

yn-
Φh

? 6 ?

•
yn+1-

Φh

yn = Φh(yn−1)

hn+1/2 = Ψy(hn−1/2)

Step size control adds dynamics interacting with method
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Time reversal and time symmetric integration

Symmetric method: Φ−1
h = Φ−h

Symmetric control: Ψ−1
y = −id ◦Ψy ◦ (−id)

Ψy

hn−1/2 • • hn+1/2
-

yn−1
• •

yn-
�

Φh

Φ−h

? 6 ?

6 ? 6

• •
yn+1-

�
Φh

Φ−h

Ψy
−hn−1/2 • • −hn+1/2

�

Exact retracing of discrete orbit and step size sequence
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Time symmetric step size control

Requirement −Ψ is an involution

Note This precludes standard control (linear Ψ)

hn+1/2 = θ · hn−1/2

as only θ = 1 or θ = −1 satisfy involution criterion

Need to seek nonlinear controllers!
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Hamiltonian systems (with E. Hairer)

Find explicit step size controllers that are time symmetric,
reversible, and preserve invariants

Consider step density objective Q(y)/ρ = Const.

Note Do not implement this as an algebraic constraint!

ρ′ = G(y)

Tracking Choose G so that ρ tracks Q
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Hamiltonian (nonlinear) controllers

Let Q be symmetric w.r.t. time reversal t→ −t and take

G(y) := Dt(log Q) =
DtQ

Q
=
∇Q · F (y)

Q

The step density controller

ρ′ = ∇Q · F (y)/Q

t′ = 1/ρ

is then Hamiltonian ( ρ′ = ~t ; t′ = −~ρ ) with first integral

~(ρ, t) = log[Q(y(t))/ρ] = Const.
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Discrete step density control

Discretize ρ′ = ∇Q · F (y)/Q with a symplectic method:

Explicit midpoint method

ρn+1/2 = ρn−1/2 +
ε∇Q · F (y)

Q

nearly preserves first integral Q(y(t))/ρ “forever”!

Stable, non-oscillatory, integrating controller
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Adaptive Störmer–Verlet method

For Newtonian mechanics
q̇ = p

ṗ = f(q)

and step size control hQα = C with Q = 1/
√

qTq

ρn+1/2 = ρn−1/2 + ε α pT
nqn/q

T
n qn

∆t = ε/ρn+1/2

pn+1/2 = pn + ∆t · f(qn)/2

qn+1 = qn + ∆t · pn+1/2

pn+1 = pn+1/2 + ∆t · f(qn+1)/2

tn+1 = tn + ∆t
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Kepler problem, e = 0.8; 30 orbits; 10,000 steps

Constant step Störmer Verlet Adaptive Störmer Verlet

Precession suppressed, 30 times smaller errors, same cost
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Energy conservation: 400 orbits; 100,000 steps
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Average step size 2π/250; variation by a factor 16

Hamiltonian error < 2 · 10−4; Angular momentum exact
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Energy conservation: 4 orbits; 10,000 steps

0 5 10 15 20 25 30
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Average step size 2π/2500; Angular momentum exact
Hamiltonian error < 2 · 10−6; 2nd order accuracy
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3D solar system, 1.38 billion years, 1010 steps

Symplectic control G(p, q) = pTq/qTq; integral gain α = 1

105 steps/dot (with Philip Sharp, Univ. of Auckland)
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4. Rolling bearing dynamics

SKF software BEAST (BEAring Simulation Tool)

Used for R& D, and as virtual test rig
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Rolling bearing dynamics

SKF software BEAST (BEAring Simulation Tool)

Used for R& D, and as virtual test rig
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Rolling bearing dynamics

Dynamics governed by mechanical contacts between bodies

Described by complex force laws
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Characteristics of governing equations

◮ Relatively few d.o.f., ∼ 1000

◮ Computationally very expensive to evaluate forces

◮ Large rotations

◮ Some components in energy conservative motion

◮ Others subject to friction

◮ Only weak dissipation

◮ Geometric integrators (mechanical integrators) do well

◮ Time-step adaptivity required

◮ Exploit MBS structure with contacts
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Time adaptivity test problem – stiff/loose spring

L(q, q̇) =
q̇2

2
−V (q) with V (q) =

1

2
max(0, q)2 +

104

2
min(0, q)2

Scaling function ∼ V ′′(q) NOTE exact solution known
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Effect of time transformation
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Systems with weak Rayleigh damping

Phase space R
2n with coordinates z = (q, p)

Governing equations

q̇ = Tp

ṗ = −Vq− εD(q)q̇
also written ż = XH(z) + εY (z)

◮ Energy H(q, p) = T (p) + V (q)

◮ D : R
n → R

n×n matrix-valued smooth function

◮ D(q) positive semi-definite

◮ Standard kinetic energy T (p) = pT
M

−1p/2
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Energy dissipation

Evolution of H

dH

dt
= ∇H · ż =∇H · (XH

︸ ︷︷ ︸

=0

+εY ) = ε∇H · Y

= −ε(M−1p)T
D(q)M−1p ≤ 0

◮ Energy dissipation rate is O(ε)

◮ What is the discrete (numerical) dissipation rate?

◮ Use method that becomes conservative for ε = 0
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Construction of explicit methods

◮ Basic idea Use splitting method

ż = XH(z) + εY (z) =XT (z)
︸ ︷︷ ︸

X1(z)

+ XV (z) + εY (z)
︸ ︷︷ ︸

X2(z)

◮ Both X1 and X2 can be integrated by explicit methods
• X1 = [M−1p, 0]T by forward Euler
• X2 = [0,−V ′(q)− εD(q)M−1p]T since it is linear in p

◮ Suggestion Dissipative Störmer–Verlet (DSV)

ϕh,ε = exp(hX1/2) ◦ exp(hX2) ◦ exp(hX1/2)

◮ ϕh,0 is classical Störmer–Verlet
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Test problem. Damped elastic 3D–pendulum

Governing equations for q, p ∈ R
3

q̇ = p

ṗ = −
(
1−

1

‖q‖

)
q − g − ε

qqTp

‖q‖2
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DSV xy–plane orbit projection
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BDF xy–plane orbit projection
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DSV energy dissipation as a function of h
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DSV averaged energy as a function of h
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BDF energy dissipation as a function of average h
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DSV energy dissipation as a function of ε

0 500 1000 1500 2000
Time

−0.16

−0.14

−0.12

−0.10

−0.08

E
n
e
rg

y

Energy plot for h = 0.1

DSV eps=0.1
DSV eps=0.01
DSV eps=0.001
DSV eps=0.0001
DSV eps=0.0

Stolen with Pride – p.58/61



BDF energy dissipation as a function of ε
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Conclusions

◮ Adaptivity based on

Digital control

Signal processing

Density functions

Symmetry/reversibility

Energy dissipation

◮ Well-defined sets of controllers
◮ Theoretical backing and analysis
◮ Usually not too difficult to implement
◮ Improved computational stability
◮ No added computational expense
◮ Significant improvements for Hamiltonian systems
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Thank you!
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