Stolen with Pride

How Control Theory brings out the best in Numerical Analysis

Gustaf Söderlind

Numerical Analysis

Lund University

Lund, October 9, 2009

Contents

What is the problem?

Adaptive numerical ODE solvers Automatic step size selection controls the error

Control and signal processing

Computational stability Step size control based on digital filters

Time transformation adaptivity

Time symmetric and reversible problems Hamiltonian systems and celestial mechanics

Rolling bearing dynamics

Systems with weak Rayleigh damping Dissipative geometric integrators

1. The problem

Time-stepping methods for initial value problem $\dot{y} = f(t, y)$

Given an approximation $y_n \approx y(t_n)$ compute

 $y_n \mapsto y_{n+1}$

with time step size $h = t_{n+1} - t_n$

Work/accuracy trade-off

Don't use constant step size – put grid points where they really matter to accuracy

Adaptive methods

Most ODE solvers are *adaptive*

Given an *error tolerance* ε , they try to select the *time step* h_n so as to make each *local error* $r_n = \varepsilon$

Asymptotic step size – error model (as $h \rightarrow 0$)

$$r_n = \varphi_n h_n^k$$

If φ is constant, then $h_{n+1} = (\varepsilon/r_n)^{1/k}h_n$ will make $r_{n+1} \equiv \varepsilon$

Adaptive methods

Most ODE solvers are *adaptive*

Given an *error tolerance* ε , they try to select the *time step* h_n so as to make each *local error* $r_n = \varepsilon$

Asymptotic step size – error model (as $h \rightarrow 0$)

$$r_n = \varphi_n h_n^k$$

If φ is constant, then $h_{n+1} = (\varepsilon/r_n)^{1/k}h_n$ will make $r_{n+1} \equiv \varepsilon$

... and numerical analysis stopped thinking, right there...!

2. Control and signal processing

Classical time-step control

$$h_{n+1} = \left(\frac{\varepsilon}{r_n}\right)^{1/k} h_n$$

In logarithmic form

$$\log h_{n+1} - \log h_n = -\frac{1}{k} \left(\log r_n - \log \varepsilon\right)$$

This is plain integrating control

Linear difference equation, $\log r \mapsto \log h$

Linear control and signal processing

Signal processing

How to map observed error sequence $\log r$ to suitable step size sequence $\log h$ while keeping $r \approx \varepsilon$

General technique

 $(q-1)Q(q)\log h = P(q)(\log r - \log \varepsilon)$

P, Q polynomial operators in forward shift operator q

New possibilities

Q "autoregressive" part; P "moving average" part

What step size properties can be achieved?

Will it have an impact on computations?

Standard, elementary time-step control

$$h_{n+1} = \left(\frac{\varepsilon}{r_n}\right)^{1/k} h_n$$

in logarithmic form is a *negative feedback control law*

$$\log \frac{h_{n+1}}{h_n} = -\frac{1}{k} \log \frac{r_n}{\varepsilon}$$

Actual implementations add safety nets and heuristics

Will it have an impact on computations?

Standard, elementary time-step control

$$h_{n+1} = \left(\frac{\varepsilon}{r_n}\right)^{1/k} h_n$$

in logarithmic form is a *negative feedback control law*

$$\log \frac{h_{n+1}}{h_n} = -\frac{1}{k} \log \frac{r_n}{\varepsilon}$$

Actual implementations add safety nets and heuristics

... so numerical analysis didn't quite stop thinking, right there!

Example of actual implementation with heuristics

```
Typical plot of \log(h_{n+1}/h_n) vs. \log(r_n/\varepsilon)
```


Nonlinear, discontinuous and nonsymmetric!

How well does it work? Chemakzo problem

Poor computational stability

Small changes in ε have large effects on output

What is computational stability?

Continuous data dependence

 $c \cdot \varepsilon \le \|e\| \le C \cdot \varepsilon$

with $\log_{10}(C/c) \ll 1$

What is computational stability?

Continuous data dependence

 $c \cdot \varepsilon \le \|e\| \le C \cdot \varepsilon$

with $\log_{10}(C/c) \ll 1$

How can it be improved?

- Digital filtering of error estimates
- Control theory for time—step selection
- Order selection controller
- Appropriate Newton iteration termination

What is computational stability?

Continuous data dependence

 $c \cdot \varepsilon \le \|e\| \le C \cdot \varepsilon$

with $\log_{10}(C/c) \ll 1$

How can it be improved?

- Digital filtering of error estimates
- Control theory for time—step selection
- Order selection controller
- Appropriate Newton iteration termination

 $\Rightarrow \log_{10}(C/c) \approx 0.05$ possible *at no extra cost!*

... and it works a lot better! Chemakzo problem

High computational stability

Compare to the standard implementation!

Poor computational stability

Revised implementation, Chemakzo problem

High computational stability

Asymptotic process model

$$r = \varphi h^k \quad \Rightarrow \quad \log r = \mathbf{k} \cdot \log h + \log \varphi; \qquad (\mathbf{G}(q) = \mathbf{k})$$

Control law

$$\log h = C(q) \cdot (\log \varepsilon - \log r)$$

Closed loop response

Step size response $H_{\varphi}(q) : \log \varphi \mapsto \log h$

$$-kH_{\varphi}(q) = \frac{k \cdot C(q)}{1 + k \cdot C(q)}$$

Error response $R_{\varphi}(q) : \log \varphi \mapsto \log r$

$$R_{\varphi}(q) = \frac{1}{1 + k \cdot C(q)}$$

Control design Low-pass filter for h and high-pass filter for r

Step size response for C(q) = P(q)/[(q-1)Q(q)]

Linear recursion $((q-1)Q(q) + kP(q))\log h = -P(q)\log \varphi$

Elementary control $Q \equiv 1; P \equiv 1/k$ Convolution filter $Q \equiv 1; P \equiv \gamma < 1/k$ *I control* $Q \equiv 1; \deg P = 0$ **PI control** $Q \equiv 1; \text{ deg } P = 1$ **PID control** $Q \equiv 1; \deg P = 2$ FIR filter $(q-1)Q(q) + k \cdot P(q) = q^m$ Autoregressive (AR) Q has zero(s) at q = 1Moving average (MA) P has zero(s) at q = -1

A digital filter for step size control

Step size low-pass filter *H*211*b*:

$$h_{n+1} = \left(\frac{\varepsilon}{r_n}\right)^{1/(bk)} \left(\frac{\varepsilon}{r_{n-1}}\right)^{1/(bk)} \left(\frac{h_n}{h_{n-1}}\right)^{-1/b} h_n$$

The filter coefficients are determined by order conditions

A digital filter for step size control

Step size low-pass filter *H*211*b*:

$$h_{n+1} = \left(\frac{\varepsilon}{r_n}\right)^{1/(bk)} \left(\frac{\varepsilon}{r_{n-1}}\right)^{1/(bk)} \left(\frac{h_n}{h_{n-1}}\right)^{-1/b} h_n$$

The filter coefficients are determined by order conditions

Properties

- Stable for $b \in [1, \infty)$ with poles at q = 0, 1 2/b
- 1st order low-pass FIR filter (deadbeat) at b = 2
- Increasing b increases noise suppression

Pole placement

FIR filter at 'o', other H211b on straight line segment

H211b frequency response on $[0.1, \pi]$

 $\log \varphi \mapsto k \log h \qquad \log \varphi \mapsto \log r \qquad \log r \mapsto \log h$

FIR filter (dashed), noise shaping: b = 4; 6; 8

On the boundary ∂S of the stability region

The model $G(q) = kq^{-1}$ is no longer valid

Instead

$$G^{\partial S}(q) = kq^{-1} \left(c_1 - \frac{c_2}{q-1} \right)$$

System identification determines coefficients c_1 and c_2

Coefficients in a narrow range for large classes of methods

Find controller that can control both G(q) and $G^{\partial S}(q)$!

Proper PI controllers (positive P gain) solve this problem

Example: modifying ode45 in MATLAB

Original vs. modified code (PI controller)

Elementary deadbeat grid in diffusion problem

Stolen with Pride - p.23/61

PI controlled grid in diffusion problem

3. Time transformation adaptivity

Variable steps via time transformations

Substitution $t \leftrightarrow s$

Variable steps Δt correspond to constant step size Δs

Useful for "geometric integration" of Hamiltonian systems, problems with invariants, reversible dynamics

Grid density control

Time stretching/compression $t = \Theta(s)$ with derivative

$$\frac{\mathrm{d}\Theta}{\mathrm{d}s} = \Theta'(s) = \frac{1}{\rho(s)} \quad \Rightarrow \quad \mathrm{d}t = \mathrm{d}s/\rho$$

Transformed differential equation $\dot{y} = F(y) \Rightarrow y' = F(y)/\rho$

Sampling (step size) correspondence

$$\Delta t = h_{n+1/2} = t_{n+1} - t_n = \Theta(s_{n+1}) - \Theta(s_n) \approx \frac{\Delta s}{\rho(s_{n+1/2})}$$

Constant steps Δs transform into variable steps $\Delta t = h_{n+1/2}$

A single step forward: $y_n = \Phi_h(y_{n-1})$

A single step forward: $y_n = \Phi_{h_{n-1/2}}(y_{n-1})$

The discrete flow is *parameterized* by the actual step size

Solution y_n determines next step size: $h_{n+1/2} = \Psi_{y_n}(h_{n-1/2})$ Step size map is parameterized by the solution

New step size gives next step forward: $y_{n+1} = \Phi_{h_{n+1/2}}(y_n)$

 $y_n = \Phi_h(y_{n-1})$ $h_{n+1/2} = \Psi_y(h_{n-1/2})$

Step size control adds dynamics interacting with method

Time reversal and time symmetric integration

Symmetric method: $\Phi_h^{-1} = \Phi_{-h}$ Symmetric control: $\Psi_y^{-1} = -id \circ \Psi_y \circ (-id)$

Exact retracing of discrete orbit and step size sequence

Time symmetric step size control

Requirement $-\Psi$ is an *involution*

Note This precludes standard control (linear Ψ)

 $h_{n+1/2} = \theta \cdot h_{n-1/2}$

as only $\theta = 1$ or $\theta = -1$ satisfy involution criterion

Need to seek nonlinear controllers!

Hamiltonian systems (with E. Hairer)

Find explicit step size controllers that are time symmetric, reversible, and preserve invariants

Consider step density objective $Q(y)/\rho = \text{Const.}$

Note Do not implement this as an algebraic constraint!

 $\rho' = G(y)$

Tracking Choose G so that ρ tracks Q

Hamiltonian (nonlinear) controllers

Let Q be symmetric w.r.t. time reversal $t \rightarrow -t$ and take

$$G(y) := D_t(\log Q) = \frac{D_t Q}{Q} = \frac{\nabla Q \cdot F(y)}{Q}$$

The step density controller

 $\rho' = \nabla Q \cdot F(y) / Q$ $t' = 1 / \rho$

is then Hamiltonian ($ho'=\hbar_t$; $t'=-\hbar_
ho$) with first integral

$$\hbar(\rho, t) = \log[Q(y(t))/\rho] = \text{Const.}$$

Discrete step density control

Discretize $\rho' = \nabla Q \cdot F(y)/Q$ with a symplectic method:

Explicit midpoint method

$$\rho_{n+1/2} = \rho_{n-1/2} + \frac{\varepsilon \nabla Q \cdot F(y)}{Q}$$

nearly preserves first integral $Q(y(t))/\rho$ "forever"!

Stable, non-oscillatory, integrating controller

Adaptive Störmer–Verlet method

For Newtonian mechanics

$$\begin{array}{rcl} \dot{q} & = & p \\ \\ \dot{p} & = & f(q) \end{array}$$

and step size control $hQ^{\alpha} = C$ with $Q = 1/\sqrt{q^{T}q}$

$$\rho_{n+1/2} = \rho_{n-1/2} + \varepsilon \alpha p_n^{\mathrm{T}} q_n / q_n^{\mathrm{T}} q_n$$

$$\Delta t = \varepsilon / \rho_{n+1/2}$$

$$p_{n+1/2} = p_n + \Delta t \cdot f(q_n) / 2$$

$$q_{n+1} = q_n + \Delta t \cdot p_{n+1/2}$$

$$p_{n+1} = p_{n+1/2} + \Delta t \cdot f(q_{n+1}) / 2$$

$$t_{n+1} = t_n + \Delta t$$

Kepler problem, e = 0.8; 30 orbits; 10,000 steps

Constant step Störmer Verlet

Adaptive Störmer Verlet

Precession suppressed, 30 times smaller errors, same cost

Energy conservation: 400 orbits; 100,000 steps

Average step size $2\pi/250$; variation by a factor 16 Hamiltonian error $< 2 \cdot 10^{-4}$; Angular momentum exact

Energy conservation: 4 orbits; 10,000 steps

Average step size $2\pi/2500$; Angular momentum exact Hamiltonian error $< 2 \cdot 10^{-6}$; 2nd order accuracy

3D solar system, 1.38 billion years, 10^{10} steps

Symplectic control $G(p,q) = p^{T}q/q^{T}q$; integral gain $\alpha = 1$ 10⁵ steps/dot (with *Philip Sharp, Univ. of Auckland*)

4. Rolling bearing dynamics

SKF software BEAST (BEAring Simulation Tool)

Used for R& D, and as virtual test rig

Rolling bearing dynamics

SKF software BEAST (BEAring Simulation Tool)

Used for R& D, and as virtual test rig

Rolling bearing dynamics

Dynamics governed by mechanical contacts between bodies

Described by complex force laws

Characteristics of governing equations

- **Relatively few d.o.f.**, ~ 1000
- Computationally very expensive to evaluate forces
- Large rotations
- Some components in energy conservative motion
- Others subject to friction
- Only weak dissipation
- Geometric integrators (mechanical integrators) do well
- Time-step adaptivity required
- Exploit MBS structure with contacts

Time adaptivity test problem – stiff/loose spring

$$L(q, \dot{q}) = \frac{\dot{q}^2}{2} - V(q) \quad \text{with} \quad V(q) = \frac{1}{2}\max(0, q)^2 + \frac{10^4}{2}\min(0, q)^2$$

Scaling function $\sim V''(q)$ NOTE exact solution known

Effect of time transformation

Systems with weak Rayleigh damping

Phase space \mathbb{R}^{2n} with coordinates z = (q, p)

Governing equations

$$\dot{q} = T_p$$

 $\dot{p} = -V_q - \varepsilon \mathsf{D}(q)\dot{q}$ also written $\dot{z} = X_H(z) + \varepsilon Y(z)$

• Energy
$$H(q, p) = T(p) + V(q)$$

- ▶ $D : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ matrix-valued smooth function
- \blacktriangleright D(q) positive semi-definite
- Standard kinetic energy $T(p) = p^T M^{-1} p/2$

Energy dissipation

Evolution of H

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \nabla H \cdot \dot{z} = \underbrace{\nabla H \cdot (X_H}_{=0} + \varepsilon Y) = \varepsilon \nabla H \cdot Y$$
$$= -\varepsilon (\mathsf{M}^{-1}p)^{\mathrm{T}} \mathsf{D}(q) \mathsf{M}^{-1}p \leq 0$$

- Energy dissipation rate is $O(\varepsilon)$
- What is the discrete (numerical) dissipation rate?
- Use method that becomes conservative for $\varepsilon = 0$

Construction of explicit methods

Basic idea Use splitting method

$$\dot{z} = X_H(z) + \varepsilon Y(z) = \underbrace{X_T(z)}_{X_1(z)} + \underbrace{X_V(z) + \varepsilon Y(z)}_{X_2(z)}$$

▶ Both X_1 and X_2 can be integrated by explicit methods

- $X_1 = [\mathsf{M}^{-1}p, 0]^T$ by forward Euler
- $X_2 = [0, -V'(q) \varepsilon \mathsf{D}(q)\mathsf{M}^{-1}p]^T$ since it is linear in p

Suggestion Dissipative Störmer–Verlet (DSV)

 $\varphi_{h,\varepsilon} = \exp(hX_1/2) \circ \exp(hX_2) \circ \exp(hX_1/2)$

•
$$\varphi_{h,0}$$
 is classical Störmer–Verlet

Test problem. Damped elastic 3D-pendulum

Governing equations for $q, p \in \mathbb{R}^3$

$$\dot{q} = p$$

$$\dot{p} = -\left(1 - \frac{1}{\|q\|}\right)q - g - \varepsilon \frac{qq^{\mathrm{T}}p}{\|q\|^{2}}$$

DSV *xy*-plane orbit projection

BDF *xy*-plane orbit projection

DSV energy dissipation as a function of h

DSV averaged energy as a function of h

BDF energy dissipation as a function of average \boldsymbol{h}

DSV energy dissipation as a function of ε

Energy plot for h = 0.1

BDF energy dissipation as a function of ε

Conclusions

Adaptivity based on

Digital control Signal processing Density functions Symmetry/reversibility Energy dissipation

Well-defined sets of controllers

- Theoretical backing and analysis
- Usually not too difficult to implement
- Improved computational stability
- No added computational expense
- Significant improvements for Hamiltonian systems

Thank you!